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ABSTRACT

Triangulating a given n-vertex simple polygon means to partition the
interior of the polygon inton − 2 triangles by addingn − 3 nonintersecting
diagonals. Significanttheoretical advances have recently been made in
finding efficient polygon triangulation algorithms.However, there is sub-
stantial effort being made in finding asimpleand practical triangulation
algorithm. We propose the concept ofpseudo-triangulation(a generalized
version of triangulation in which the member triangles need not all have
the same orientation), and explore some of its combinatorial and topologi-
cal properties. Some of the main results of this paper are: (1) We prove
the triangulation-flip-graphof a simple polygon is connected. Using this
theorem we obtain a very simple linear-time algorithm to recognize
whether a given triangulation of a simple polygon is its unique triangula-
tion. (2) We prove the maximum diameter of the triangulation-flip-graph
is Θ(n2). (3) We prove theSpin-Number Theoremon simple polygons; an
interesting topological result. (4) We propose a triangulation heuristic that
uses theangular (deficit) indices, and the chord-flip operation, in a local
search to transform an initial pseudo-triangulation (which is easy to con-
struct) into a triangulation.The significant open problem with this regard
is finding an effective criterion in further refinement of the heuristic
regarding the selection of the chord in the chord-flip operation.

key words. simple polygon, triangulation, pseudo-triangulation, chord-
flip operation, spin number, angular (deficit) index.
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1. Intr oduction
Let P be a simplen-vertex polygon (n ≥ 3) defined by the list of its vertices

v0 , v1 , . . . , vn−1 in positive orientationaround the boundary. Let us assume the boundary
of P is denoted∂P in positive orientation as well. (To be concrete, we may assume
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positive orientation is counter-clockwise, and negative orientation is clockwise.If we
walk on ∂P in positive orientation the interior ofP in the immediate neighborhood will be
on our left hand side.)We definevn : = v0. For convenience we will assume that no three
vertices ofP are collinear. We call this thegeneral position property. (After we describe
our methodology, it will become clear how to remove this assumption without significant
adjustments.) Theedgesof P are the open line segments with endpointsvi , vi+1 for
0 ≤ i < n. A chord of P is an open line segment whose endpoints are two nonadjacent ver-
tices ofP. A diagonalof P is a chord ofP that has empty intersection with the exterior
of P. Note that by the general position property, a diagonal ofP does not intersect∂P
either. The triangulation problemis to find n − 3 nonintersecting diagonals ofP, which
partition the interior ofP into n − 2 triangles. Itis a known fact that any simple polygon
has at least one triangulation. (See Figure 1.)
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Figure 1. A triangulated simple polygon.

For a simple polygon, in general, determining whether an arbitrary given chord is
also a diagonal is a nontrivial task.However, if P is convex, then any chord is also a
diagonal. Thisfact allows us to find a triangulation of a convex polygon in O(n) time
quite easily. Linear time triangulation algorithms are known for other special cases as
well, such as for monotone polygons [7], and star-shaped polygons [12,25]. Thefirst
nontrivial triangulation algorithm for the general case was proposed in 1978 by Garey,
Johnson, Preparata, and Tarjan [7].This algorithm takesO(n log n) time. Sincethen, one
of the most outstanding open problems in computational geometry has been whether the
triangulation problem can be solved in linear time. In the recent years substantial amount
of research effort has gone into resolving this open problem. Some researchers have
devised triangulation algorithms with running timeO(n log k), for a parameterk that mea-
sures the complexity of the polygon, such as the number of reflex angles [12], or the sinu-
osity [2]. Since all these measures admit classes of polygons withk = Θ(n), the worst
case running time of these algorithms is only known to beO(n log n). Fournier and Mon-
tuno [6] showed the triangulation problem is linear time equivalent to finding all vertex-
edge horizontally visible pairs (or, equivalently, computing the horizontal visibility subdi-
vision). Thereduction of triangulation to computing the horizontal visibility information
was independently obtained by Chazelle and Incerpi [2]. Since then, almost all
researchers in the field have chosen this approach, namely, computing the horizontal visi-
bility subdivision. Tarjan and Van Wyk [24] devised anO( n log log n ) time triangulation
algorithm. Thisis a major theoretical breakthrough and shows that triangulation is easier
than sorting.Tarjan and Van Wyk’s algorithm uses the divide-and-conquer paradigm and
computes the horizontal visibility information, using an adaptation of the Jordan sorting
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algorithm [14] and homogeneous and heterogeneous finger search trees at two different
levels of the algorithm. As a result, the computational overhead of their algorithm is very
high. (Clarkson,Tarjan, and Van Wyk [4] have adapted the above algorithm and used
random sampling [3] to devise a randomized triangulation algorithm withO(n log* n)
expected time.)Very recently, Kirkpatrick, Klawe, and Tarjan [16] propose a somewhat
simpler algorithm than [24]. This shows that algorithmic simplicity is still an important
issue regarding the polygon triangulation problem, but it is still a problem to be pursued
vigorously.

In this paper we propose the new concept ofpseudo-triangulation, a generalized
version of triangulation, in which the member triangles need not all have the same orien-
tation. We explore some combinatorial and topological properties of pseudo-triangula-
tions. Ourmethodology in solving the triangulation problem may be viewed as a graph
search method where the underlying graph is thepseudo-triangulation-flip-graphof P (or
flip-graphof P, for short).
The remaining portion of this paper is organized as follows. Section2 introduces the
concept of pseudo-triangulations and shows some basic facts about it. Included in this
section are the introduction of the characteristic function of a simple polygon and the
proof of its additive property with respect to pseudo-triangulations (a fact which is used
in subsequent sections), and a necessary and sufficient condition for a pseudo-triangula-
tion to be a triangulation. Section 3 proves a connectivity theorem on triangulation-flip-
graphs, one of whose corollaries is that in linear time we can decide whether a given tri-
angulated polygon has a unique triangulation. The connectivity theorem of this section
might have other applications such as in shortest paths and visibility problems.We also
show that the maximum possible diameter of the triangulation-flip-graph isΘ(n2). (How-
ev er, the diameter of the flip-graph is known to beΘ(n) due to [23].) Themain result of
Section 4 is the Spin-Number Theorem. Section 5 introduces the notion of angular
indices (integer weights on the vertices of the polygon) which provides yet another char-
acterization of triangulations via pseudo-triangulations.This leads us to propose a
generic method for the solution of the triangulation problem.Section 6 makes some con-
cluding remarks and poses some open problems.

2. Pseudo-Triangulations
Consider two chords( vi , v j ) and( vk , vl ) of P. Without loss of generality assume

i < j andk < l . We say the two chordsinterlaceif i < k < j < l or k < i < l < j . Below, we
will use some terminology from combinatorial topology. (See for example [1, 21].) Let
T be a two dimensional simplicial-complex consisting ofn − 2 triangles (or 2-simplices),
2n − 3 segments (or 1-simplices), andn vertices (or 0-simplices).We say T is apseudo-
triangulationof P if it satisfies condition (i) below.
(i) the combinatorial property: The vertices ofT are the vertices ofP. Each segment of

T is either an edge or a chord ofP. A segment inT is incident* to exactly one trian-
gle in T if it is an edge ofP, and it is incident to exactly two triangles inT if it is a
chord ofP. In the latter case we may call the segment a chord ofT. If, in addition,
it is a diagonal ofP, we may call it a diagonal ofT as well. Furthermore,T has no
pair of chords that interlace.
It should be obvious that any triangulation ofP is also a pseudo-triangulation ofP.

Let T be a pseudo-triangulation ofP. We assign an orientation to each triangleT j of T as
follows. We consider∂T j to have the orientation on which its three vertices are seen in
the same order as on∂P. (Note, by the general position property the three vertices are not
collinear.) ThenT j inherits the same orientation as∂T j . (See Figure 2.) As we shall see
in Theorem 5 below, a pseudo-triangulationT of P is a triangulation ofP if and only if it
satisfies condition (ii) below.

* two simplices areincidentif one is a face of the other.
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(ii) the topological property: All triangles inT have the same orientation asP.
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Figure 2. A pseudo-triangulation of the polygon( v0 , . . . , v5 ). Triangles
( v0 , v1 , v2 ), ( v2 , v3 , v4 ) and ( v0 , v4 , v5 ) have positive orientation. Triangle
( v0 , v2 , v4 ) has negative orientation.

To help the intuition, there is a second way to define pseudo-triangulations.Let C
be aconvexn-vertex polygon, where∂C contains the list of verticesu0 , u1 , . . . , un−1 in
positive orientation. Thenthe triangulations ofC are in one-to-one correspondence with
the pseudo-triangulations ofP with the following correspondence: A triangulationT′ of C
corresponds to a pseudo-triangulationT of P if (ui , u j ) is a diagonal ofT′ if and only if
(vi , v j ) is a chord ofT. Let us call this correspondence thenatural mapping. (See Figure
3.)
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Figure 3. A pseudo-triangulation and its natural mapping. The sign in triangle
( ui , u j , uk ) indicates the orientation of triangle( vi , v j , vk ).

Now we define an elementary operation calledflip which transforms one pseudo-tri-
angulation ofP to another. Let T be a pseudo-triangulation ofP and(vi , v j ) a chord ofT
incident to two trianglesT1 andT2 of T. Let vk andvl be the other two vertices ofT1 and
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T2. We say the chord(vk , vl ) of P is thedual of (vi , v j ) with respect toT. A flip is the
operation of replacing a chord by its dual in a pseudo-triangulation.This operation is
obviously reversible. If the flip operation is applied to convex polygons, it transforms one
triangulation of the polygon to another. We also define theflip-graphof P to be the graph
where its nodes correspond to pseudo-triangulations ofP, and two nodes of the graph are
adjacent if the corresponding pseudo-triangulations can be obtained one from the other by
a single flip operation. The flip-graphs are isomorphic to the so calledrotation graphs
that have been studied in the literature [5,18, 23]. It is known that these graphs are
Hamiltonian and have diameterO(n).

Let Q be a simple polygon with vertex setU in the planeR2. We define thecharac-
teristic functionχQ : R2 − U → { 0 , ±½ , ±1 } of Q as follows. For a pointp∈R2 − U we
define the magnitude ofχQ ( p ) to be0 if p is in the exterior ofQ, ½ if p is on∂Q − U ,
and1 if p is in the interior ofQ. The sign ofχQ ( p ) is defined to be positive or neg ative
if the orientation ofQ is, respectively, positive or neg ative. We leave χQ ( p ) undefined if
p is a vertex of Q.
Theorem 1. Let T be a pseudo-triangulation ofP which contains the trianglesT j , for
1 ≤ j ≤ n − 2. Let V denote the set of vertices ofP. Then for every pointq ∈ R2 − V the
following identity holds:

χ P ( q ) =
n−2

j=1
Σ χT j

( q )

Proof: We prove the above identity by showing that the flip operation leaves the value of
the right hand side of the equation invariant. Suppose(without loss of generality) that the
trianglesT1 andT2 of T are replaced by two new trianglesT1′ andT2′ by a flip. A case
analysis easily shows thatχT1

( q ) + χT2
( q ) = χT1′ ( q ) + χT2′ ( q ). (See Figure 4.)The

proof is complete by the two facts that the flip-graph ofP is connected and that the equa-
tion obviously holds ifT is a triangulation ofP.
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Figure 4. The flip operation. Case (i): no overlap; cases (ii) and (iii): total over-
lap; case (iv): partial overlap.

For a simple polygonQ, let area (Q) denote the signed area ofQ (with the Euclidean
metric), whose magnitude is the area ofQ and whose sign is the orientation ofQ. There
is an analog of Theorem 1 about signed areas; the related identity is:

area (P) =
n−2

j=1
Σ area (T j )

A proof similar to that of Theorem 1 can be used to prove the area identity. (For an alter-
native proof of a special case see [17].)We will use the characteristic function again
later.
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Lemma 2. In any pseudo-triangulationT of P no pair of diagonals cross each other.

Proof: Otherwise under the natural mapping we would get a triangulation of the convex
polygonC with a pair of crossing diagonals, a contradiction.
Lemma 3 (The Enclosure Lemma). SupposeR andQ are two simple polygons such that
Q does not intersect the exterior ofR and has at least three vertices in common withR
and its remaining vertices are in the interior ofR. Then the common vertices ofR andQ
appear in the same order around∂R and ∂Q if R and Q have the same orientation, and
appear in reverse order ifR andQ have opposite orientation.

Proof: We use mathematical induction on the number of noncommon vertices ofR andQ.
Suppose the vertices common to bothR andQ arew0 , w1 , . . . , wk−1 in the order around
∂Q. Let wk : = w0. First assume there is a vertex of either R or Q which is not a vertex of
the other. This implies that there exists an index i , 0 ≤ i < k, so that the portion of∂Q
from wi to wi+1 is not a subset of∂R. Let the oriented polygonal chainΠ be the portion of
∂Q from wi to wi+1. Π partitions the interior ofR into two simple polygonsRi andLi , so
that Ri is to the right ofΠ andLi is to the left.We assumeRi andLi have the same orien-
tation asP. By the Jordan Curve Theorem, the interior ofQ must be either entirely inRi ,
or entirely inLi . If Q is in Ri , then by mathematical induction and the fact thatwi and
wi+1 appear in the same order around∂Ri and∂Q, Q must have the same orientation asRi
and their common vertices appear in the same order around∂Ri and ∂Q. Since in this
case every vertex common to bothR andQ is also common toRi andQ, the inductive
step follows. If Q is in Li , then again by induction and the fact thatwi andwi+1 appear in
opposite order around∂Li and∂Q, Q must have the opposite orientation toLi and their
common vertices appear in opposite order around∂Li and ∂Q. Since in this case every
vertex common to bothR andQ is also common toLi andQ, the inductive step follows.
The base of the induction is the case whenR andQ have the same set of vertices. Inthis
case a similar argument holds in which eitherRi or Li is identical toR, for all 0 ≤ i < k.
In other words, in this caseR andQ must be the same polygon with either the same or
opposite orientation.
Corollary 4. Supposet is one of the triangles in a pseudo-triangulation ofP. If t has
negative orientation, then at least one of its sides is neither a diagonal nor an edge of P.

Proof: If all three sides oft are either edges or diagonals ofP, then The Enclosure
Lemma applies and thereforet has the same orientation asP, which is positive, a contra-
diction.

A much stronger version of Corollary 4 will be proved in Section 4.
Theorem 5. Let T be a pseudo-triangulation ofP. ThenT is a triangulation ofP if and
only if all triangles ofT have positive orientation.

Proof: If T has a negatively oriented triangle, Corollary 4 implies thatT is not a triangula-
tion of P. If all triangles ofT have positive orientation, then Theorem 1 implies that the
triangles ofT cannot intersect the exterior ofP; that no two triangles ofT can have com-
mon interior points; and that each interior point ofP is either in the interior of one trian-
gle ofT or on the common chord of two such triangles. In other words, the triangles ofT
partition the interior ofP and henceT is a triangulation ofP.

An implication of Theorem 5 is that in any pseudo-triangulationT of P at least one
triangle is positively oriented. This is because if all the triangles ofT are negatively ori-
ented, thenT must be a triangulation of the polygon identical toP but in opposite orienta-
tion. But this is absurd. It was Theorem 5 and the fact that the diameter of the flip-graph
of P is O(n) that was the first motivating factor in our study of pseudo-triangulations.The
underlying implication is that for each pseudo-triangulation ofP as a starting one, there is
a sequence ofO(n) flip operations, that converts it to a triangulation ofP. Furthermore,
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after each step we can determine inO(1) time whether the current pseudo-triangulation is
indeed a triangulation ofP by simply keeping the count of how many neg atively oriented
triangles it contains.

3. TheTr iangulation-Flip-Graph
From the literature, we already know a few facts about the structure of the flip-graph

[5, 18, 23]. As we mentioned earlier, we know that the flip-graph is Hamiltonian and has
diameterO(n). It is desirable to know more about this graph. As an obvious additional
property, we can mention that the flip-graph is triangle free, i.e. has no 3-clique.Let us
call the subgraph of the flip-graph induced by the nodes which correspond to triangula-
tions ofP the triangulation-flip-graphof P. What can we say about the connectivity and
the diameter of the triangulation-flip-graph?This graph may not be Hamiltonian.
Indeed, it may not even be biconnected and may not contain a Hamiltonian path either.
For such an example see Figure 5. However, we hav ethe following facts.

Figure 5. The subgraph of the flip-graph induced by the nodes that correspond
to the triangulations ofP may not be biconnected, and may not have a Hamilto-
nian path.

Theorem 6. The triangulation-flip-graph ofP is connected.

Proof: Assumen ≥ 4, otherwise there is nothing to prove. An ear of a triangulation ofP
is any of its triangles that has at least two edges ofP as its sides. It is well known that
whenn ≥ 4 any triangulation ofP has at least two ears. (Seefor example [13,19].)

SupposeT andT′ are two triangulations ofP. We will show that there is a sequence
of flip operations that converts T to T′ in such a way that all intermediate pseudo-triangu-
lations obtained by this sequence are also triangulations ofP. Let t be an ear ofT′. If t is
also an ear ofT, then we may discardt and apply the proof to the remaining smaller poly-
gon. Solet us assumet is not an ear ofT. Suppose the two edges ofP that are the sides
of t are(vi−1 , vi ) and(vi , vi+1). Suppose the other ends of the diagonals inT incident to
vi arew1 , w2 , . . . , wk−1 in order around∂P. Let w0 : = vi+1 andwk : = vi−1. We claim that
there is an index j , 1 ≤ j < k, such that the quadranglevi , w j−1 , w j , w j+1 is convex.
Sincet is an ear ofT, none of the verticesw1 , w2 , . . . , wk−1 can be int, otherwise they
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would prevent the visibility betweenvi−1 and vi+1. Therefore,w1 , w2 , . . . , wk−1 are on
the opposite side of the line throughvi−1 andvi+1 with respect tovi . Among the vertices
w1 , w2 , . . . , wk−1 let w j be orthogonally farthest from the line throughvi−1 and vi+1.
Then, obviously, the quadranglevi , w j−1 , w j , w j+1 is convex, as desired. Therefore,
(w j−1 , w j+1) is a diagonal ofP. (See Figure 6.) If we flip(vi , w j ) to replace it with
(w j−1 , w j+1), we will obtain a new triangulation ofP in which the number of diagonals
incident tovi has decreased by one.If we continue this process, through a sequence of
flip operations which produces only triangulations, eventually t becomes an ear ofT.
Now, we can discardt and apply the same argument on the remaining portion of the poly-
gon.

V

W

i

i+1
V      =Wi−1 k

jW

j−1W

j+1

W

V       =W

W

0

2

1

Figure 6. The figure used in the proof of Theorem 6.

Corollary 7. Given a triangulationT of P, we can determine whetherT is the unique tri-
angulation ofP in O(n) time.

Proof: Theorem 6 implies thatT is the unique triangulation ofP if and only if it does not
have any diagonal whose two incident triangles together form a convex quadrangle. The
latter condition can easily be checked inO(1) time for each diagonal ofT.

For an example of a simple polygon with a unique triangulation see Figure 7.
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Figure 7. A simple polygon with a unique triangulation.

Theorem 8. The maximum diameter of the triangulation-flip-graph of any simple poly-
gon withn vertices isΘ(n2).

Proof: Let P be a simplen −vertex polygon andD(P) denote the diameter of its triangula-
tion-flip-graph. Fromthe proof of Theorem 6 it follows thatD(P) is O(n2) since we need
less thann flips for each "ear removal". The fact thatD(P) could be as large asΩ(n2) is
apparent from the simple example in Figure 8. The number of diagonal flips needed to
convert the triangulation in Figure 8 (a) to the triangulation shown in Figure 8 (b), in such
a way that all intermediate pseudo-triangulations are actually triangulations, is
( n/2  − 1 )(  n/2  − 1 ). To see this, it suffices to notice that aftern − 3 diagonal flips the
instance is converted to one with 2 less vertices. (An ear removed from each side.)The
reason why this is the minimum number of flips necessary follows from the fact that at
each step there are at most two flips possible; one on each side of the "middle diagonal".

Figure 8. Two triangulations of an hourglass polygon.

4. SpinNumbers
Let O be a point outside the convex hull of P. Let Γ be an open oriented simple

polygonal chain from pointO to vertexa of P such that it does not intersectP. Further-
more, we make the simplifying assumption thatΓ has only finitely many intersection
points with any chord of P, with all such intersections being crossing intersections (i.e.,
no tangential intersections). We call Γ a probe to vertexa. Let t be the triangle with
vertices a, b andc of P seen in that order around∂P. We define thespin at vertex a of
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triangle t with respect toΓ, denotedψ a ( t ; Γ ), to be the algebraic number of timesΓ
intersects( b , c ), i.e. the side oft opposite vertexa, where an intersection is counted+1
if at that pointΓ enterst, and counted−1 if at that pointΓ exits t. (See Figure 9.)The
spins at verticesb andc are defined similarly.

Ο

Γ

_

+

+

+

c

b

a

Figure 9. The spin at vertex a of triangle t = ( a , b , c ) with respect to the
probeΓ ; ψ a ( t ; Γ ) = + 2.

Lemma 9. Let Γ and Γ ′ be two probes to vertex a of triangle t. Thenψ a ( t ; Γ ) =
ψ a ( t ; Γ ′ ).

Proof: There exists a third probeΓ ′′ to a that has no points in common withΓ or Γ′. Let
Q be the simple polygon whose boundary isΓ followed bya, followed by the reverse of
Γ ′′, followed byO. Verticesb andc are in the exterior ofQ. As we move from b to c
along the chord( b , c ) count the algebraic number of times we move in and out ofQ,
counting+1 as we move into Q and count−1 as we move out of Q. by the Jordan Curve
Theorem, the magnitude of that count isψ a ( t ; Γ ) − ψ a ( t ; Γ ′′ ) = 0. With a similar
argument we haveψ a ( t ; Γ ′ ) − ψ a ( t ; Γ ′′ ) = 0. The lemma follows.

Lemma 9 says the spin numbers at vertices of a triangle are a property of the trian-
gle itself (and ofP of course) and do not depend on which particular probes we choose.
Because of this we may use the shorter notationsψ a ( t ), ψ b ( t ) andψ c ( t ). (See Fig-
ure 10.)
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a

b
c

Figure 10. The spin numbers at vertices of trianglet = ( a , b , c ) ;
ψ a ( t ) = + 1, ψ b ( t ) = + 1 andψ c ( t ) = − 1.

Remark. We could have defined the spin numbers in terms ofwinding numbers. For
instance,ψ a ( t ) is the winding number of pointa with respect to the closed curve that is
formed by going fromb to c along∂P followed by the segment fromc back tob.

Supposex is a vertex of P but not of t. Let α x ( t ) denote the algebraic number of
times a probe to vertex x intersects∂t; again, counting an intersection+1 if the probe
enterst at that point, and−1 otherwise. Bythe Jordan Curve Theorem we know α x ( t )
is 0 if x in outsidet, and is+1 if x is insidet. We hav ethe following fact about spin num-
bers:
Theorem 10(The Spin-Number Theorem). Lett be a triangle with three verticesa, b and
c of P in that order around∂P. Then the quantity ψ a ( t ) + ψ b ( t ) + ψ c ( t ) is 0 if t
is positively oriented, and is+1 if t is negatively oriented.

Proof: Supposea = vi , b = v j and c = vk. Consider the triple( j − i , k − j , i − k ) where
index arithmetic is done modulon (i.e., addn to the result of the subtraction if it is neg-
ative). We consider all such possible triples in lexicographic order. So, without loss of
generality, assumej − i ≤ k − j ≤ i − k.

Case (i): Suppose1 = j − i = k − j ≤ i − k. That is,( a , b ) and ( b , c ) are edges of
P, Since probes by definition do not intersectP, we must have ψ a ( t ) = ψ c ( t ) = 0.
Triangle t is negatively oriented if the internal angle at vertex b of P is reflex, andt is
positively oriented otherwise.Now consider a probeΓ to vertexb. As we move along Γ
sufficiently close tob (where distance is measured alongΓ), we will be inside trianglet if
t is negatively oriented, and we will be outsidet otherwise. Sincethe origin ofΓ is out-
side t and the only way Γ can intersect the boundary oft is by intersecting the chord
( a , c ), we concludeψ b ( t ) must be+1 if t is negatively oriented, and must be0 if t is
positively oriented. (See Figure 11 (a) and (b).)

Case (ii): Now suppose1 = j − i < k − j ≤ i − k. In this case( a , b ) is an edge ofP.
Therefore,ψ c ( t ) = 0. Let Γ be a probe toa. Let γ be a point onΓ so that the distance
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from γ to a alongΓ is sufficiently small.Let Γ ′ be the probe tob which consists of the
portion ofΓ from O to γ followed by pointγ , followed by the open segment fromγ to b.
If γ is insidet, then so is the entire segment fromγ to b. If γ is outsidet, then the seg-
ment fromγ to b is either entirely outsidet or it intersects the boundary oft only once
with the intersection being on the chord( a , c ). If the segment ( γ , b ), in the suffi-
ciently small neighborhood ofb, is insidet, then by the Jordan Curve Theorem the alge-
braic number of timesΓ ′ intersects the boundary oft is +1. Since no such intersection
can occur on( a , b ), we concludeψ a ( t ; Γ ) + ψ b ( t ; Γ ′ ) = + 1. With a similar rea-
soning we conclude thatψ a ( t ; Γ ) + ψ b ( t ; Γ ′ ) = 0 if the segment ( γ , b ), in the
sufficiently small neighborhood ofb, is outsidet. Furthermore, Since the interior of the
triangle( a , b , γ ) has no point in common withP, we conclude that the orientation oft
is positive if and only if the segment( γ , b ), in the sufficiently small neighborhood ofb,
is outsidet. (See Figure 11 (c) and (d).)

Case (iii): Now suppose1 < j − i ≤ k − j ≤ i − k. Let d = vi+1. Consider the triangles
t1 = ( a , d , b ), t2 = ( a , d , c ), and t3 = ( d , b , c ). The theorem holds fort1 and t2
due to case (ii) above. Also, since trianglet3 is lexicographically smaller thant, the theo-
rem is assumed proven for t3 already. Triangle t might be positively or negatively ori-
ented. For each of these two cases there are seven sets of possibilities (fourteen cases in
all) for the location of pointd as shown in Figure 11 (e) and (f).We will prove the theo-
rem for case 1 as shown in Figure 11 (e). The proof of the other cases, being similar, are
left to the reader. In case 1 trianglest and t2 are positively oriented, and trianglest1 and
t3 are negatively oriented. For this case we have the following equations:

0 = α a ( t3 ) = + ψ a ( t1 ) + ψ a ( t2 ) − ψ a ( t ) (1)

0 = α b ( t2 ) = − ψ b ( t1 ) + ψ b ( t3 ) + ψ b ( t ) (2)

0 = α c ( t1 ) = − ψ c ( t2 ) + ψ c ( t3 ) + ψ c ( t ) (3)

0 = α d ( t ) = + ψ d ( t1 ) + ψ d ( t2 ) − ψ d ( t3 ) (4)

Let us use the abbreviation Ψ (t′ ) : = ψ u ( t′ ) + ψ v ( t′ ) + ψ w ( t′ ) for any triangle
t′ = ( u , v , w ). From equations (1)−(4) we see that− α a ( t3 ) + α b ( t2 ) + α c ( t1 ) −
α d ( t ) =  0  = Ψ ( t ) − Ψ ( t1 ) − Ψ ( t2 ) + Ψ ( t3 ). SinceΨ ( t1 ) = + 1, Ψ ( t2 ) = 0, and
Ψ ( t3 ) = + 1, we concludeΨ ( t ) = 0.
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Figure 11. The cases used in the proof of Theorem 10.

As a first application, we see that Corollary 4 is now an obvious consequence of
Theorem 10. This is because if trianglet, with verticesa, b andc, is neg atively oriented,
then by the theorem at least one ofψ a ( t ), ψ b ( t ) or ψ c ( t ) is positive. Sayψ a ( t ) is
positive. Then( b , c ) is neither an edge nor a diagonal ofP, since it must intersect any
probe to vertexa.

Our initial attempt was to assign some kind of integer weights to the vertices of each
triangle in a pseudo-triangulation ofP with the aim of using these weights as a guide for
the selection of a suitable chord to flip. It was this attempt that led us to the definition of
spin numbers and the discovery of the Spin-Number Theorem.However, the effective
use of spin numbers is still open.The difficulty comes in updating the spin numbers after
a flip operation is performed. Suppose the chord( a , c ) is flipped and replaced by its
dual ( b , d ). Before the flip operation takes place the two triangles incident with the
chord( a , c ) aret1 = ( a , b , c ) andt2 = ( a , c , d ). After the flip operation the two new



-15-

triangles incident with the new chord ( b , d ) aret3 = ( a , b , d ) andt4 = ( b , c , d ). Ide-
ally, we would want the six new spin numbers of the vertices of the trianglest3 and t4 to
be completely determined by the six old spin numbers of the trianglest1 and t2 and (the
positions of) the verticesa, b, c, d. If this were so, then the updating could be done in
O(1) time; however, this is not the case. (See Figure 12.) In the next section we will
define an alternative notion of integer weights at vertices which seem to be more promis-
ing.

(ii)

db

c
a

c

db

a

(i)

d
b

c
a

d
b

c
a

Figure 12. The triangles aret1 = ( a , b , c ) and t2 = ( a , c , d ) before the flip,
and t3 = ( a , b , d ) and t4 = ( b , c , d ) after the flip. In both cases (i) and (ii)
prior to the flip operation we have ψ a ( t1 ) = 1, ψ b ( t1 ) = 0, ψ c ( t1 ) = 0,
ψ a ( t2 ) = 1, ψ c ( t2 ) = 0, ψ d ( t2 ) = − 1. Howev er, after the flip operation in
case (i) we have: ψ a ( t3 ) = 0, ψ b ( t3 ) = 1, ψ d ( t3 ) = 0, ψ b ( t4 ) = 1,
ψ c ( t4 ) = 0, ψ d ( t4 ) = − 1; but in case (ii) we have: ψ a ( t3 ) = 0, ψ b ( t3 ) = 0,
ψ d ( t3 ) = 1, ψ b ( t4 ) = 0, ψ c ( t4 ) = 0, ψ d ( t4 ) = 0.

5. Angular (Deficit) Indices
In this section we define a local quantity that shows some promise towards success-

ful application in an ultimate triangulation algorithm.Let angle( a ) denote the internal
angle ofP at vertex a. Supposet is an oriented triangle with verticesa, b and c. We
define thesigned-angle at vertex a of triangle t, denotedω a ( t ) , so that its magnitude is
the internal angle oft at vertexa and its sign is the orientation oft. ω b ( t ) andω c ( t )
are defined similarly. Therefore,ω a ( t ) + ω b ( t ) + ω c ( t ) equals+π radians if t is
positively oriented and is−π radians ift is negatively oriented. SupposeT is a pseudo-
triangulation ofP consisting of trianglesT j , for 1 ≤ j ≤ n − 2. Assumem of these trian-
gles are negatively oriented and the remainingn − m − 2 are positively oriented. The total
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signed-angle sum of these triangles is thereforeπ ( n − 2 ) − 2mπ . This last quantity can
be interpreted as follows. Thetermπ ( n − 2 ) is the sum of the internal angles ofP, and
the deficit term2mπ is due to the fact thatT containsm negatively oriented triangles.
Suppose (without loss of generality) that the triangles ofT incident to vertex a are
T1 , T2 , . . . , Tl . Let us define thesigned-angle of vertex a with respect to the pseudo-tri-
angulationT, denotedω a ( T ), to be

ω a ( T ) : =
l

i=1
Σ ω a ( Ti ) .

Because of connectivity we must have

ω a ( T ) = angle( a ) + 2 ka π

for someinteger ka (negative, zero or positive). We call ka theangular index of vertexa
with respect to the pseudo-triangulationT. We say, with respect toT, vertex a is bal-
ancedif ka = 0, hasangular surplusif ka > 0, and hasangular deficitif ka < 0. (See Fig-
ure 13.)

V

V

_ _0V

5

4V
V2

3V

1

+

Figure 13. Angular index of vertexv1 in this pseudo-triangulation is−1.

Lemma 11. Let T be a pseudo-triangulation ofP. ThenT is a triangulation ofP if and
only if no vertex of P has angular deficit with respect toT.

Proof: From above definitions we see that the sum of the angular indices of vertices ofP
is −m wherem is the number of negatively oriented triangles ofT. If m > 0, then obvi-
ously some vertex has angular deficit.If m = 0, then by Theorem 5 T is a triangulation
of P; hence, all vertices ofP are balanced.
Lemma 12. Let T be a pseudo-triangulation ofP. Let kv be the angular index of vertex
v with respect toT. Then there is some natural numberα such that 2α − kv triangles ofT
contain vertex v in their interior; α of these triangles are negatively oriented andα − kv
of these triangles are positively oriented.

Proof: Suppose the triangles ofT that are incident tov are Ti , for 1 ≤ i ≤ l , and the
remaining triangles ofT areTi , for l < i ≤ n − 2. Let N be a sufficiently small neighbor-
hood of vertexv. (We assumeN is small enough that it does not intersect with any chord
of P that is not incident tov.) Let p be an arbitrary point inN ∩ exterior ( P ) . Since

vertex v has angular index kv , by connectivity we must have
l

i=1
Σ χTi

( p ) = kv . From

Theorem 1 we have
n−2

i=1
Σ χTi

( p ) = 0 . Therefore,
n−2

i=l+1
Σ χTi

( p ) = − kv. Let α denote
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the number of negatively oriented triangles ofT that are not incident tov and containp in
their interior. Since p is not on the boundary of any triangle ofT, there must beα − kv
positively oriented triangles ofT that are not incident tov and containp in their interior.
Sincev is sufficiently close top, the lemma follows.
Corollary 13. If vertex v has angular deficit with respect toT, then some positively ori-
ented triangleT j of T contains vertexv in its interior.

Proof: Obvious consequence of Lemma 12.
In the pseudo-triangulationT let us say vertexv is saturatedif all n − 3 chords ofT

are incident tov.
Corollary 14. A saturated vertexv in a pseudo-triangulationT must be balanced.

Proof: Since all triangles ofT are incident tov, the proof follows from Lemma 12.
Notice that the triangleT j of Corollary 13, although positively oriented, cannot have

all its sides as edges or diagonals ofP, since it includes a vertex of P in its interior. Moti-
vated by the above two corollaries, let us definea chain of trianglesin a pseudo-triangu-
lation T of P to be a sequenceT′0 , T′1 , . . . , T′l of distinct triangles ofT, so thatT′i−1 and
T′i , are incident to a common chordci , for 1 ≤ i ≤ l . We say the length of this chain isl .
A chain, in a pseudo-triangulation, is determined by its initial and final triangles.Let v be
the vertex incident toT′0 but not to T′1. We might also refer to the above mentioned
chain as the chain from vertexv to triangleT′l . We say the sequencec1 , c2 , . . . , cl is the
chain of separating chordsfrom vertexv to triangleT′l . Suppose vertexv has an angular
deficit and hence by Corollary 13 it is in the interior of a positively oriented triangleT j of
T. Let c1 , c2 , . . . , cl be the chain of separating chords from vertexv to triangleT j . Intu-
itively, we would want to flipc1. There are two advantages for doing so. One is that the
flip will shorten the length of the chain and eventually "destroy" it. The other is that if we
keep performing such flips with respect to vertexv, it will eventually have to become bal-
anced by Corollary 14. The question is, how do we determine which triangle ofT is inci-
dent to vertexv whose side oppositev is c1?

The effect of a flip operation to the angular indices is strictly local.(This is the
desired property that spin numbers, as explained in the previous section, do not possess.)
A fl ip operation can change the angular index of only one of the four vertices involved in
the operation, and that will happen if and only if that vertex is in the convex hull of the
other three. (See cases (ii) and (iii) of Figure 4.) Furthermore, this change is only addi-
tive by the amount+1 or −1.

Consider a pseudo-triangulationT in which one vertex, sayv0 is saturated. Then, by
Corollary 14,v0 is balanced.Sincev1 andvn−1 are incident to one triangle each, they are
either balanced or have angular deficit index −1 depending on whether the internal angle
of P at those vertices is, respectively, convex or reflex. Eachof the remaining vertices
v2 , . . . , vn−2 is incident to two triangles ofT. Therefore the signed-angle of those ver-
tices with respect toT must be in the range from−2π to +2π . This implies that the angu-
lar indices of these vertices must be either0 or −1. In summary, the angular indices of all
vertices with respect toT is 0 or −1 and these can be determined in totalO(n) time.

In a pseudo-triangulationT let us call a chord( u , w ) a candidatechord if there is a
vertex v of P such thatv has angular deficit and( v , u , w ) is one of the triangles inT.
Below, we propose our heuristic for the solution of the triangulation problem. (Note that
in its generic form, this heuristic is nondeterministic due to line 5.)
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Heuristic triangulate (P );
0. letT be the pseudo-triangulation in whichv0 is saturated;
1. computethe angular indices of vertices with respect toT;
2. {comment: all angular indices at this point are0 or −1}
3. letC be the list of candidate chords ofT;
4. while C is not empty do
5. selectand remove a candidate chord( u , w ) from C;
6. flip ( u , w );
7. updateT, the angular indices, andC
8. end while;
9. outputT.

6. Remarksand Open Problems
The only place where the heuristic is not deterministically specified is at line 5.

What should be the criterion in selecting a candidate chord?There certainly is a
sequence ofO(n) flips that will solve the problem. (This is the diameter of the flip-
graph.) However, even the termination of the heuristic is not quite clear and depends on
further refinement of line 5. The resolution of this point needs further research work.

A second question is whether spin numbers, which we studied in Section 4, can have
effective algorithmic application.

Another point which deserves further work is exploring additional applications of
Theorem 6. One is that, it might be possible to generate thevisibility graph of P effi-
ciently and with a low computational overhead. For existing work on this problem see
[8, 11, 22]. It might be possible to start from one triangulation ofP and judiciously go
through a sequence of flip operations and collect diagonals ofP as they are generated for
the first time by the flip operations.The efficiency of the method would depend on the
amortized number of flip operations needed to produce one more "new" diagonal.How-
ev er, the reader should keep in mind the rather negative result stated in Theorem 8.

A similar idea might be possible for computing the single source shortest path trees
insideP. For the related work in the literature see [9,10, 15]. There is a unique shortest
path tree for each vertex of P considered as the source. For a vertex v, the edges of the
shortest path tree with sourcev is a subset of at least one triangulationT of P. Let us call
a triangulationT with this property ashortest path triangulationof P with respect to
sourcev. Once such a triangulation is known, the corresponding shortest path tree can be
extracted from it in linear time. Theorem 6 implies the existence of a sequence of flip
operations that generates a corresponding sequence of triangulations ofP which contains,
as a subsequence, a sequence of shortest path triangulations, one for each vertex as the
source. Ifsuch a sequence of flip operations is relatively short and can be found effec-
tively, it will result in an efficient algorithm to generate all the shortest path trees of the
polygon.

References
1. Alexandroff, P.S.,Combinatorial Topology, Vol. 1 (1956).
2. Chazelle,B. and J. Incerpi, “Triangulation and shape complexity,” ACM Trans. on

Graphics,pp. 135-152 (1984).
3. Clarkson,K.L., “Applications of random sampling in computational geometry, II” in

Proc. 4th ACM Symp. on Computational Geometry,pp. 1-11 (1988).
4. Clarkson,K.L., R.E. Tarjan, and C.J. Van Wyk, “A fast Las Veg as algorithm for tri-

angulating a simple polygon” inProc. 4th Annual Symp. on Computational Geome-
try, pp. 18-22 (1988).



-19-

5. Culik,K. and D. Wood, “A note on some tree similarity measures,” Inform. Process.
Lett.,15, 1, pp. 39-42 (1982).

6. Fournier, A. and D.Y. Montuno, “Triangulating simple polygons and equivalent
problems,”ACM Trans. on Graphics,pp. 153-174 (1984).

7. Garey, M.R., D.S. Johnson, F.D. Preparata, and R.E. Tarjan, “Triangulating a simple
polygon,” Inform. Process. Lett.,pp. 175-180 (1978).

8. Ghosh,S.K. and D.M. Mount, “An output sensitive algorithm for computing visibil-
ity graphs” inProc. 28th Annual Symp. on Foundations of Computer Science, pp.
11-19 (1987).

9. Guibas,L.J. and J. Hershberger, “Optimal Shortest path queries in a simple poly-
gon” in Proc. 3rd Anual Symp. on Computational Geometry,pp. 50-63 (1987).

10. Guibas,L.J., J. Hershberger, D. Lev en, M. Sharir, and R.E. Tarjan, “Linear time
algorithms for visibility and shortest path problems inside triangulated simple poly-
gons,”Algorithmica ,2, 2, pp. 209-234 (1987).

11. Hershberger, J., “Finding the visibility graph of a simple polygon in time propor-
tional to its size” inProc. 3rd Annual Symp. on Computational Geometry, pp. 11-20,
Waterloo (1987).

12. Hertel,S. and K. Mehlhorn, “Fast triangulation of a simple polygon” inProc. Conf.
Found. of Comput. Theory,pp. 207-218, Springer-Verlag, Berlin, New York (1983).

13. Highnam,P.T., “The ears of a polygon,” Inform. Process. Lett.,15, 5, pp. 196-198
(1982).

14. Hoffman, K., K. Mehlhorn, P. Rosenstiehl, and R.E. Tarjan, “Sorting Jordan
sequences in linear time using level-linked search trees,” Inform. and Control, 68,
pp. 170-184 (1986).

15. Kapoor, S. and S.N. Maheshwari, “Efficient algorithms for Euclidean shortest path
and visibility problems with polygonal obstacles” inProc. 4th Annual Symp. on
Computational Geometry,pp. 172-182 (1988).

16. Kirkpatrick, D.G., M.M. Klawe, and R.E. Tarjan, “Polygon triangulation in
O(n log logn) time with simple data-structures” inProc. 6th Annual Symp. on Com-
putational Geometry,pp. 34-43 (1990).

17. Lopshits,A.M., Computation of Areas of Oriented Figures(1963).
18. Lucas,J.M., “The rotation graph of binary trees is Hamiltonian,” J. Algorithms,8, 4,

pp. 503-535 (1987).
19. Meisters,G.H., “Polygons have ears,”Amer. Math. Monthly, 82, pp. 648-651 (1975).
20. Mirzaian, A., “Triangulating simple polygons: pseudo triangulations,” Technical

Report CS-88-12, Dept. of Computer Science, York University (1988).
21. Moise,E.E.,Geometric Topology in Dimensions 2 and 3(1977).
22. Overmars, M.H. and E. Welzl, “New methods for computing visibility graphs” in

Proc. 4th Annual Symp. on Computational Geometry,pp. 164-171 (1988).
23. Sleator, D.D., R.E. Tarjan, and W.P. Thurston, “Rotation distance, triangulations,

and hyperbolic geometry” inProc. 18th Annual ACM Symp. on Theory of Comput.,
pp. 122-135 (1986).

24. Tarjan, R.E. and C.J. Van Wyk, “An O(n log log n)-time algorithm for triangulating
simple polygons,”SIAM J. Comp.,17, 1, pp. 143-178 (1988).

25. Woo, T.C. and S.Y. Shin, “A l inear time algorithm for triangulating a point-visible
polygon,”ACM Trans. on Graphics,4, pp. 60-69 (1985).


