
Many Looks Before a LeapXiaotie Deng 1, Evangelos Milios 2, Andy Mirzaian 31 Department of Computer Science, City University of Hong KongKowloon, Hong Kong2 Department of Computer Science, York UniversityNorth York, Ontario, Canada, M3J 1P3deng@cs.cityu.edu.hk, feem, andyg@cs.yorku.ca.AbstractWe are interested in the problem of map con-struction of an unknown environment. Even witha complete map, navigation of real autonomousmobile robots is still conducted with imperfectinformation. This can be caused by various fac-tors, such as imperfect sensors, imperfect me-chanical control capabilities, and imperfect roadconditions. Computational resource constraintsfor real time performance may also prevent usfrom collecting and processing complete informa-tion about the environment. A major problemcaused by these issues is that accummulated er-rors in the robot's self-localization may becomearbitrarily large as the robot moves on. There-fore, in addition to the map, we would still needa strategy to help robots recognize the environ-ment along the way and to guide movements to-ward the destination. This is called the guidanceproblem by Levitt and Lawton (Levitt & Lawton1990).We discuss an approach for the guidance prob-lem using imprecise data, in the context of worldmodels that are represented by maps with quali-tative/topological information for the global en-vironment, and quantitative/geometric informa-tion for the local environment, as suggested byLevitt and Lawton (Levitt & Lawton 1990),Kuipers and Levitt (Kuipers & Levitt 1988).We allow the robot to be equipped with a con-stant number of sensors. We consider three costmeasures: mechanical, sensing, and computationin decreasing order of importance. We propose anumber of algorithms with their associated costmeasures using a veriety of sensor/measurementdevices. IntroductionNavigation and mapping of autonomous mobile robotsinvolve a modelling problem and a strategy designproblem. First of all, we would need a model to de-scribe the environment where mobile robots operate.This model allows us to build a map which takes intoconsideration the necessary information for a robot to

recognize its location through its sensors, to match itsobservations of the environment with its map, and tokeep track of its movement toward the goal. To e�-ciently build this map, we need to design a strategyfor the robot to make decisions on what kind of ob-servations to make and where to move next for moreinformation. Even to navigate from one location toanother with the help of a map, the robot would haveto rely on its observations on the environment to ma-neuver between obstacles and to locate itself on themap.With many possible models for an environment, twoextreme cases (both with some drawbacks) are widelyaccepted: the graph model and the geometric model.The graph model abstracts away metric information ofthe environment and retains only topological informa-tion. It represents important locations as nodes androutes between them as edges. The robot can movefrom one node to another through an edge betweenthem (Deng & Papadimitriou 1990). The geomet-ric model records all the necessary geometric detailsof the environment where the robot operates (Canny& Reif 1987; Deng, Kameda, & Papadimitriou 1991;Guibas, Motwani, & Raghavan 1992).Even with the world model �xed, di�erent robot per-ceptual abilities can still make a di�erence. A robotwith the power of unambiguously recognizing each in-dividual node will see the world di�erently from onewith more limited recognition power, for example abil-ity to only recognize some property of the nodes. Forexample, Rivest and Schapire consider a graph worldwhere nodes are divided into a small number of classes,for example, white and black colours, and can only berecognized as such (Rivest & Schapire 1989).The computational power of the robot is also im-portant. Blum and Hewitt consider a robot with thepower of an automaton (Blum & Hewitt 1967). Whilea single automaton cannot search all mazes (Budach1978), this is possible with two automata (Blum &Kozen 1978). In experimental mobile robotics (Cox &



Wilfong 1990), robots typically are Turing-equivalent(carrying general purpose computers on board).Some models allow the robot to carry pebbles todistinguish a location from another. Blum and Kozenshow that two pebbles would be enough to aid oneautomaton to search a maze (Blum & Kozen 1978).Deng and Mirzaian consider a robot which recognizesits own footprints but cannot distinguish/erase foot-prints (Deng & Mirzaian 1996).More comprehensive world models, suggested byLevitt and Lawton (Levitt & Lawton 1990), Kuipersand Levitt (Kuipers & Levitt 1988), consider a cog-nitive map which provides qualitative/topological in-formation for the global environment, and quantita-tive/geometric information for the local environment.Dudek et al. discuss a topological graph world modelfor which the incident edges at each node are circularlyordered (Dudek et al. 1991).In line with the approach suggested by the worldmodels of Levitt and Lawton (Levitt & Lawton 1990),Kuipers and Levitt (Kuipers & Levitt 1988), we mayassume two distinguished modes for robots: station-ary and moving. In the stationarymode, the robot canmake precise measurement of the local environment us-ing its sensors. In the moving mode, only qualitativechanges in the environment can be observed. To avoidcumulative error in its self-localization, we require thatthe robot be able to infer precise geometric informationabout the environment only from a constant number(independent of the input size or complexity of theenvironment) of data items collected from various lo-cations. For example, we will not use the sum of ndata items in the algorithm for the guidance problemwhere n is the number of objects in the environment.We consider several di�erent sensors: compass to�nd absolute orientation, ray generator to point to aspeci�c object, sonar or laser to measure distance toan object, rotating camera or laser to measure anglesde�ned by pairs of point objects and the robot. We areinterested in the minimal set of sensors which allow usto solve the guidance problem. Again, we only allowthe robot to carry a constant number (independent ofthe input size of the environment) of various sensors.This guidance problem can be divided into the fol-lowing parts:the model of the map for robot navigation with a setof sensors for the map construction strategy.the strategy, for robot navigation from one locationto another, which directs its manuevering betweenthe obstacles.the observations its sensors should make to keep iton the planned track.

We want to solve the guidance problem while min-imizing mechanical movement cost and measurementcost. In many cases, we make much more measure-ments than movements.In Section 2, we discuss the world model and ourapproach in more detail. To illustrate our approach,we consider the physical enviroment to be a two di-mensional plane with point objects. We show how tosolve the guidance problem with several sets of sensorsin Section 3. We also discuss how some of the solutionscan be extended to higher dimensions. In Section 4, wediscuss how to solve the guidance problem assumingeven weaker sensing equipment, which can only deter-mine the relative order of objects instead of measuringexact angles. We conclude our work in Section 5 witha discussion of future directions.The World ModelMobile robots may operate with imperfect sensors andimperfect mechanical control capabilities, as well asunder imperfect road conditions. A result of theseimperfections is that, for robots operating on a largescale space, small errors can accumulate to the extentthat robots get lost. This cannot be completely re-solved by improvements on these factors. Several dif-ferent approaches are suggested to deal with situationswhere errors may occur, including approximate solu-tions, qualitative maps, and multi{level representationof the environment. (see, for example, (Brooks 1987;Kuipers & Byun 1991; Levitt & Lawton 1990; Teller1992) ).A principle for resolving this problem, as suggestedin the work of Levitt and Lawton (Levitt & Lawton1990), Kuipers and Levitt (Kuipers & Levitt 1988), isto use easily recognizable features of the environmentto de�ne a global qualitative map. This global mapcan be built with features that can be precisely mea-sured locally. We may view the graph world model ofDudek et al. (Dudek et al. 1991) as an example of thisprinciple. In this model, nodes represent places in theenvironment important to the robot, and edges rep-resent routes connecting these places. Furthermore,locally at each node, its incident edges are cyclicallyordered. The robot can observe the cyclic order of theedges incident to a node only when it arrives at thisnode.For the guidance problem, the �rst question is howto build this map; the second question is how a robotcan use the map to navigate in its environment. Dudeket al. describe a method for building the map using oneportable and recognizable token, which can be droppedand picked up at nodes of the graph. Once the map isbuilt, and the position of the robot in the environment



is labelled in the map together with its orientation (i.e.,an edge at this node is matched to a road at this placethe robot is located), the token is no longer needed andthe robot can navigate between any two nodes of theenvironment with the help of the map. A drawback ofthe graph-based model in a real environment is that itis not always straightforward to de�ne what a node isin a robust way.Our general approach is to consider a more realisticgeometric setting where objects are located at arbi-trary positions in space. We assume that the error forone sensory datum is a constant independent of theinput size or complexity of the environment and so isour tolerance for accumulative errors. Therefore, todeal with the problem of accumulative errors, we allowmathematical operations only on a constant numberof data items observed by the robot on di�erent loca-tions. We consider a point robot, though the generalprinciple discussed in this paper would remain validno matter what is the geometric shape of the robot.In practical problems, one would equip the robot withwhatever sensors would solve the guidance problem aslong as it is economically feasible. Therefore, we don't�x the sensor equipment for the robot in our discus-sion. Instead, we present the problem and ask whatis the best set of sensors which can help us to solveit. We are interested in a robot which can carry only aconstant number of sensors and would like to minimizethe number of sensors.We assume two distinguished modes for robots: sta-tionary and moving, and introduce the following guide-lines for the measurement a robot can make duringeach of these modes.1. In the stationary mode, the robot can make precisemeasurements of the environment using its sensor.2. In the moving mode, only qualitative changes can beobserved.This requirement makes explicit the fact that mea-surements can typically be made much more precisewhen the robot is stationary than in motion. More-over, it takes time to analyze the data collected bysensors, so the robot may not be able to process theinformation quickly enough to respond to changes inthe environment in real time. For example, in the sta-tionary mode, with a rotating camera, we may measureangles between two landmarks; and we can measuredistance of the robot from one landmark using laser orsonar. In the moving mode, however, the robot can domuch less. The rotating camera can only keep trackof the relative order of two landmarks. Laser or sonarcan only tell the robot whether it is moving away fromor toward a given landmark. A rotating camera can

track the landmark it pointed at when it was last instationary mode.Three di�erent types of cost may a�ect the perfor-mance of the robot: mechanical cost, measurementcost, and computational cost. They are usually ofdi�erent orders of magnitude. Thus, we would liketo obtain algorithms which minimize the vector (me-chanical cost, measurement cost, computational cost)lexicographically. There are di�erent metrics for thesecosts. For simplicity, we consider counting the num-ber of stops the robot makes as the mechanical cost,the number of angle measurements or distance mea-surements as the measurement cost, and the numberof basic arithemetic/logic operations as the computa-tional cost.Two dimensional Space with PointObjectsWe consider an environment of n indistinguishablepoint objects in 2{dimensional space and the robot islocated at an arbitrary point initially. Suppose therobot has a point object tracking sensor, that givesthe robot the following abilities. In stationary mode,the robot can make precise measurements of angles be-tween rays starting at the robot and pointing towardstwo arbitrary point objects. In moving mode, the robotcan keep the sensor �xated on an point object, and itcan count the number of point objects crossing (fromleft/right) the line segment between the robot and theobject, or ensure no point objects cross this line seg-ment.First, we notice that the robot can always move to anobject on the convex hull of these point objects. Theidea is as follows 1. From the initial object, there aren�1 rays to the remaining n�1 objects. The robot canmake a circular scan with its object tracking sensor andmeasure the angles formed by each pair of consecutiverays. Since the angle measurement is precise, and allangles are obtained at the same robot location, we can�nd the maximum angle of these n�1 angles. (This isa function of n�1 data items but collected at the samelocation. This would not be allowed if the data itemswere collected on n�1 di�erent locations.) Now chooseone object which delimits this maximum angle, pointthe object tracking sensor to it and move to this object.Continue the above operation until the maximum anglefrom the current robot position is greater than > 180o.This implies that an object on the convex hull has beenreached.Second, once the robot reaches one object on theconvex hull, it can move in a clockwise order to allthe objects on the convex hull by moving each time tothe point delimiting the > 180o angle that was not the



Figure 1: A robot can move to the convex hull of aset of points by repeating the following: �rst mea-sure the angles between successive rays to points, andthen move to a point that belongs to the largest angle.Point objects are denoted by circles. Rays are shownfrom the current robot position. The robot itself isnot shown. The largest angle between successive raysis shown. When it becomes greater than 180 degrees,the robot is on the convex hull.previous robot position. Theoretically, the robot canknow when it has come back to the starting object onthe convex hull by adding up the external angles untilthe sum is 360o. However, in our model this is notallowed in order to avoid accumulative errors (thesedata items are collected in di�erent locations.)Finally, we should notice that a single object track-ing sensor is not enough for the robot to construct acomplete map. As a simple example, suppose we haveas three objects at the vertices of an equilateral tri-angle and another object at its center. If we start atthe center, there is no way to unambiguously matchobjects we see in the environment with those in themap. Even if we start at a boundary point and nameobjects from the object we start with, we may get lostif we ever move to the center.Lemma 0.1 The robot can move to a point object onthe convex hull with a single point object tracking sen-sor in O(n) moves and O(n2) angle measurements.However, in the presence of symmetries, there are sit-uations the robot may get lost when interior objectsexist.The guidance problem would be easy if we allowedan unbounded number of point object tracking sensorson the robot. If the robot has n � 1 sensors, it canpoint each sensor to a di�erent object while movingfrom one point to another. Two consecutive rays mayswitch their positions during the movement and the or-der of it depends on the movement path. Of course, thecircular permutation of these rays gives the view of therobot at destination. However, for the robot to carrya number of sensors proportional to the number of ob-jects in the environment is not realistic. Therefore, welook for di�erent approaches to help the robot solve

Figure 2: In the left part, angle ai is associated withobject i. In the right part, angle ai is used to identifyobject i by counting the objects above the line throughobject i at angle ai with respect to north. Object 0 isthe reference object, i.e. the one with the smallestxcoordinate.the guidance problem with a �xed number of sensors.In summary, we will use point objects on the con-vex hull as landmarks for robot navigation. Thus, wewould construct a map which gives a name to eachpoint object. At each point object on the convex hull,we have a circular permutation of all the point objectsin the map which corresponds to the clockwise orderthey come into view. The circular permutation will bebroken into a permutation in di�erent ways accordingto the di�erent sensors or landmarks we use.The Power of an Extra CompassConsider a coordinate system where the y axis pointsNorth. With the compass, we can move to the pointwith the smallest x-coordinate by testing that thenorth direction is tangent to the convex hull at thispoint in the clockwise direction. We may name thisobject as 0. While stationary at object 0, we mayname other objects in the order they are met duringa clockwise scan from the north direction 2. Each ob-ject i is associated with an angle �i formed by the rayfrom 0 to i and the ray towards north (assuming noaccidental alignments of objects). The number of ob-jects in the unbounded sector between the ray towardsnorth and the ray from 0 to i is i � 1. Therefore, atpoint object i in the environment, we can �gure out itsname, as de�ned above, by drawing the straight linewhich forms an angle �i with the North, and countthat the number of objects bounded toward the Northby this straight line is i � 1. These operations are al-lowed since we only compare data collected from twodi�erent locations.The above observation allows the robot to know thename of each object by making the above measure-ments once reaching the object. Starting at each objecti, with the use of the compass and the above test, the



robot can visit other objects and obtain their namesin a clockwise order starting from the North direction.This results in a permutation of all other objects forthe rays going out of object i. For example, the permu-tation associated with object 3 in 2 is 12450. Thus, ourmap is a complete directed graph such that each nodeis associated with a permutation of all other nodeswhich correspond to the rays from this object towardother objects in the clockwise order (starting from theNorth). To navigate from one object to another, therobot can check the permutation of the initial node to�nd the position of the other node, and make a clock-wise scan from the North (using the compass) until theposition of the other node is reached and move towardit.The Use of LighthousesWe comment that a similar map can be constructed byusing two lighthouses with di�erent colours of lights.Similar to the use of compass, the position of an objectis uniquely determined by the angle between the tworays from this object to the lighthouses (excluding theaccidental case where an object lies on the circle de-�ned by the two lighthouses and another object). Therobot can position itself on any object on the convexhull and name other objects by its clockwise scan ofthem, starting from one of the lighthouses. Then, itcan measure the angle formed by the two rays towardthe lighthouses from any object, moving to them oneby one. Notice that the robot can always move backto this initial object by �rst moving to one of the light-houses. After that, the algorithm will be the same asthe above except that the robot uses the angle with thelighthouses instead of the angle with the North whenusing a compass.The use of object-tracking sensorsThe above solutions use a set of globally available ref-erences | in the former, the compass which alwayspoints to North, in the latter, the lighthouses whichare visible from anywhere. Can we construct the mapand solve the guidance problem without such externalhelp? One such solution is to use point object trackingsensors which allow the robot to walk along a straightline segment from one object to another object and toknow where it comes from when reaching the destina-tion. This can be achieved as follows, use one sensorto point to the destination and another to the objectit comes from (the source). One may argue that therobot would not be able to always walk straight in ourmodel. However, since the robot can keep track of thesource object and the destination object while moving,it acts as if it has been moving on a straight line onceit reaches the destination. In practice, this would be

implemented by a local control strategy that keeps therobot along the line segment between the source andthe destination with good approximation.Again, the robot �rst moves to an object on theconvex hull and names it as object 0. We name otherobjects based on a clockwise enumeration of the raysfrom object 0 toward them, starting at one ray thatforms the > 180o angle and ending at the other. Ifthe robot uses three sensors, it can always keep onepointed to object 0 and the other two to maintain thesource object and the destination object. So object iis uniquely de�ned as follows: the number of objectsbounded away from the line passing through the ray 0iin its counterclockwise direction is i� 1. The solutionfor constructing the map will be similar to that of usingcompass. The only di�erence will be in the rule fordeciding the name of an object once the robot reachesit. To navigate from one object to another, the robotwill again maintain a sensor pointed to object 0 tomaintain knowledge of its orientation at all times.Even though there is no extenal �xed reference here,the extra ray pointed to object 0 e�ectively creates aglobal reference object for the robot.Extension to Higher DimensionsThe use of lighthouses can be naturally extended tohigher dimensions by introducing one extra lighthousefor each additional dimension. Similarly, when we haveseveral sensors, we maintain a reference to a set of �xedobjects. The use of compass is usually restricted to theearthly two dimensional space. However, we may beable to obtain a �xed orientation at each point in spaceusing di�erent physical principles.Robot with Qualitative Measure ofAnglesIn this section, we make an even weaker assumptionthat measurements of angles are also qualitative evenwhen the robot is in the stationary mode. That is, therobot cannot measure exact angles but only the relativeorder of the objects as they are seen in a circular scananchored at the robot's position. However, the robotcan still decide whether an angle is greater than 180oor not. Exact angle measurement would incur morecost than simply counting the number of objects in acircular scan or deciding that an angle is > 180o.With this capability, we can still decide whether theobject the robot is currently positioned at a convexhull point or not.We consider a solution using also three point ob-ject tracking sensors Rs, Rd and Rr (for tracking thesource, destination and a reference point respectively).Similar results can be obtained if we use lighthouses



or a compass to substitute for some of these objecttracking sensors. As noted above, with the two objecttracking sensors Rs and Rd, the robot can walk along atopologically straight line segment between two pointobjects and hence remember the source point whenreaching the destination. The following sketches themajor steps to map the environment.Step 1: Move to a convex hull point and name itobject 0. This �rst step can no longer be done as beforesince we cannot decide which angle is the largest unlessit is > 180o. Instead, we �nd a line passing throughthe current object which minimizes the total number ofobjects on one side. Move to one object in the side withthe fewer objects and continue until reaching an objecton the convex hull which can be tested by �nding anangle > 180o. From now one we always let one of thethree sensors lock on object 0.Step 2: Order other points clockwise: v01, v02, � � �,v0;n�1, where the �rst and the last are the two convexhull neighbors of object 0 (they make angle > 180oaround object 0). For the sake of simplifying notation,we will let i denote v0i.Step 3: For each i, 1 � i � n� 1, compute the maprepresentation of object i as follows 3. Standing atobject i, let vij , 1 � j � n� 1, denote the j-th objectclockwise around i, with vi1 = 0. To establish themap, we have to �nd the value k such that vij = v0k.Starting from object i we move towards j while keepingthe sensor Rs locked on i, Rd locked on j, and Rrlocked on 0. From j we start moving towards 0, whilekeeping Rs locked on j, Rd locked on 0, and Rr lockedon i. When at 0, using the fact that Rs is still pointingto j, we can scan and count counterclockwise from theray 0j until v01. This count is k (i.e., vij = v0k).Using the sensors, we can come back to object i.From the above description we formulate the follow-ing theorem.Theorem 0.2 With no precise angle measurements,robots with the ability (perhaps with the use of somesensors) to emulate moving on straight lines, measure180o and circularly order rays from their current po-sition, can establish the map of n point objects withO(n2) moves and O(n2) scans as well as O(n2) com-putations.Discussion and RemarksWe have shown an approach for the guidance prob-lem using imprecise data, following the world models
Figure 3: In the top part, the robot R moves from i toj while �xating on i,j, and 0. In the middle part, therobot moves from j to 0, while �xating on i,j, and 0. Inthe bottom part, the robot identi�es the map represen-tation for j by enumerating the objects swept clockwiseby a ray starting just before ray 01 and stopping justbefore ray 0j. Object 0 is the reference object.
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