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Abstract

Map labeling is of fundamental importance in cartography and geographioatiafion sys-
tems and is one of the areas targeted for research by the ACM ComputationattBebmnpact
Task Force. Previous work on map labeling has focused on the probleroiigimaximal uni-
form, axis-aligned, disjoint rectangles on the plane so that each pointddatbe labeled lies at
the corner of one rectangle. Here, we consider a number of variants of thabedipd problem.

We obtain three general types of results. First, we devise constaat{etynomial-time ap-
proximation algorithms for labeling point features by rectangular lalvdigre the feature may
lie anywhere on the boundary of its label region and where labeling rdetantay be placed
in any orientation. These results generalize to the case of elliptical laBetsondly, we con-
sider the problem of labeling a map consisting of disjoint rectilingas $egments. We obtain
constant-factor polynomial-time approximation algorithms for ge@eral problem and an op-
timal algorithm for the special case where all segments are horizontallly-iwe formulate a
bicriteria version of the map-labeling problem and provide bicritpdynomial-time approxi-
mation schemes for a number of such problems.
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1 Introduction

Automatic map-making is an important part of Geographioimfation Systems (GIS). Although
nearly two decades of development have led to some good rafmgnalgorithms, cartographic
knowledge and experience remain critical to the produatfcgood maps: “the craft of making maps
is still an indispensable ingredient” [BC94]. Map labelings been targeted by the ACM Computa-
tional Geometry Task Force [CGI96] as one of the importaeaamof research in Discrete Compu-
tational Geometry. As pointed out in [CMS95], applicationscartography require three different
label-placement tasks: (i) labeling area features (suclastries and oceans); (ii) labeling line (seg-
ment) features (such as rivers and roads); and (iii) labgdmint features (such as cities and mountain
peaks). An efficient algorithm must solve these three lplstement tasks simultaneously. Note that
all three tasks share a combinatorial aspect: labels mtsiveolap; as remarked in [CMS95], this
aspect of label placement is independent of the nature déttieres being labeled and is perhaps the
most basic problem to solve for automating label placembnthis paper we focus on generating
non-overlapping label placements for point features aatiireear (axis-parallel) segment features.

Cartographic labeling requires a cartographer to congitamy conflicting criteria for labeling
the maps, such as location, orientation, shape, size, aodrgphy for each label. In a seminal paper
in this area, Imhof [Im75] illustrates these goals by givitgp examples of good and bad labeling
decisions. As pointed out in [MS91], the following concearg of particular importance: (i) the
degree to which labels overlap with each other and obscutegraphic features; (ii) the degree to
which labels are unambiguously and clearly associated twétfeatures they identify; (iiig priori
preferences among a canonical set of potential label positiand (iv) the number of point features
left unlabeled. Legibility may take precedence over agsttpacement, especially for technical
maps where every feature must be labeled [FW91].

These considerations lead us to definedbaeral point-feature map-labelingroblem. An in-
stance of this problem consists of a set of point featuresaas®t of constraints (such as permissible
amount of overlap) for placing labels. The goal of the probis to label each feature so as to satisfy
the constraints.

2 Related Literature

Current practical approaches to map-making use a mixeggyréor solving the map-labeling prob-
lem: the problem is first formulated mathematically and sdhalgorithmically, then experienced
cartographers use their know-how and sense of aesthegdite the result.

On the theoretical side, Formann and Wagner [FW91] studiedpotoblem of labeling a set of
n points such that each point is assigned an axis-alignedingbectangle, each rectangle is placed
so that one of its corners is the point feature it labels,egitangles have the same size, and the size
of the rectangles is maximized. They proved that this prolileNP-complete and that, unleBs=
NP, no polynomial-time approximation algorithm can do bettean 50% of optimal;, moreover,
they presented af(n log n) time approximation algorithm achieving this bound. Wadiéag94]
then proved that an approximation algorithm that achietiesiound must tak€(n logn) time.
More recently, Wagner and Wolff [WW95, WF95] introduced soheuristics that appear to perform
well on small problems. [KMPS93] gave two exact algorithrihvime complexitiesD (4V™) and

O(4Vnleen): these algorithms can be used to find optimal solutions fallsimstances(about 100
points).



In general, map labeling appears to be a hard problem singelbsely related to the NP-hard
independent seandkSAT problems [KR92]. Other researchers have built automategHatzeling
systems since the early 70’s, typically using a combinatibheuristics such as mathematical pro-
gramming, gradient descent, etc.; a comprehensive sumveyist of references can be found in
[CMS93]. Given that map-labeling can be thought of as attergo meet a set of rules [Im75],
several researchers have also attempted to solve the praisieg techniques from artificial intelli-
gence and logic programming (see, for instance, [Jo89§)afbrementioned survey also discusses
these attempts as does [DF92].

3 Our Results

We study several variants of the general point-feature lalgling problem. Our results significantly
extend and generalize those of [CMS93, FW91] on the comtylexid approximability of the map-
labeling problem. We consider the following two generalias of the problem: (i) allowing the
labels to be rectangular or elliptical while removing angtrietion on their orientation; and (ii)
allowing a feature to be anywhere on the boundary of its la&gibn (rather than at a vertex of its
labeling rectangle). These generalizations reflect thietfet, in many of today’s electronic maps,
labels are not restricted to textual matter, but may alsorbphical (although even purely textual
labels have long been placed non-horizontally in maps)ll lof éhese cases, we retain the objective
function proposed by Wagner and his colleagues, namelyifieec$ the uniform labeling areas.
Figure 1 illustrates the large potential gains resultirgrfrour generalization: part (a) shows the
largest axis-aligned square labels, while part (b) shoedaiyest square labels in our model.
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Figure 1: The difference between Wagner’'s model and ours.

(@)

We also note that most previous research in map labeling déti how to label sites (points),
while we mentioned earlier that linear features (riverseets, etc.) often need their own labels.
In practice, we often need to label rectilinear line segiestich as city streets or VLSI circuits.
The labeling area associated with such segments is a réstding length of which is the length of



the corresponding segment and the width of which is to be mizgrid (subject to the constraints of
the problem); this area can be placed in one of three positi@pove or below a horizontal segment
(naturally, left or right of a vertical segment) or acrosd anthe middle of it (i.e., making the segment
the mid-edge of the labeling area).

Given the complexity of the map-labeling problem, we inigegge the existence of polynomial-
time approximation algorithms. We present the first polyi@iime approximation algorithms and
approximation schemes for a number of variants of the génedamap-labeling problem. Recall
that an approximation algorithm for a maximization problErprovides gperformance guaranteef
0 < p < 11if, for every instancd of I1, the solution value returned by the approximation algarith
is within a factorp of the optimal value fo. We obtain the following results for the generalized
map-labeling problem:

e For labeling a map with uniform squares (in arbitrary ordioins), we provide a polynomial-
time approximation algorithm with a performance guaramte®,/2/ sin(7/10).

e For labeling a map with uniform circles, we provide a polyraltime approximation algo-
rithm with a performance guarantee4f® + /3).

e Forlabeling a map with uniform regular polygons, we proa there exists a constant-factor,
polynomial-time approximation algorithm for each type efjular polygon.

e For labeling rectilinear segments with rectangles of unifevidth, we provide a polynomial-
time approximation algorithm with a performance guarawtiez We also show that the prob-
lem can be solved exactly id(n logn) time when all segments are horizontal.

Our approximation algorithms for labeling point features gery efficient and easily implemented;
all run in O(n log n) time with small constants.

Going back to the criteria of [MS91], we note that one criariisted is the number of features left
unlabeled—we all have encountered maps with unlabeledreat Yet all the algorithms mentioned
above label every feature. By allowing a small number ofuiess to remain unlabeled, we may
be able to better label the other features. This approachdintes a trade-off between the quality
(size) of the labels placed and the number of unlabeledrestiVe present a bicriteria framework in
which, forn features and any given we must find a placement of at led$t— ¢) - n labels, each of
size at leastl — c- €) times the optimal labels, for some positive constarwe present a simple, yet
very general technique, based on discretization of the mdpta labels, to construct a polynomial-
time approximation scheme for this problem and its varia8isce it has been shown in [FW91] that
the map-labeling problem cannot be approximated withirceofaof 2 unless” = N P, our bicriteria
framework offers one way to overcome the limitations impbisg labeling every feature.

4 Preliminaries

We define formally our two problems for labeling point feasiand briefly discuss a related tractable
problem that we shall use in our approximation algorithmse §We definitions for the decision
versions of our problems, in the interest of clarifying thenfial computational complexity of these
problems; the optimization version is trivially formuldtéom the decision version.

Definition 4.1 An instance of the problem of Map Labeling with Uniform Squares (MLUS)
consists of n points (features) in the plane and a positive integer bound B. The question is
whether there exists a placement for n squares, each of side B, such that



e no two squares intersect; and
e each point lies on a square and no two points lie on the same square.

Observe that the solution to the MLUS optimization probleweryes if we have four or fewer points:
with four points (in general position), each point can hassoaiated with it an infinite square. Since
an infinite square is effectively a quarter of the plane, mjgat solutions cannot exist for five or more
distinct points.

Definition 4.2 An instance of the problem of Map Labeling with Uniform Circles (MLUC) is
given by a set of n points (features) in the plane and a positive integer bound B. The
guestion is whether there exists a placement for n circles, each of radius B, such that

e No two circles intersect; and
e each point lies on a circle and no two points lie on the same circle.

Observe that the solution to the MLUC optimization probleredyes if we have just two points, but
must be finite for three or more points, since an infinite eiisleffectively a half-plane.
We shall make extensive use of the following well-solvedabem.

Definition 4.3 Given a set S of points, the k-diameter of any subset of £ points is the maxi-
mum distance between any two points in the subset. The minimum k-diameter of S, denoted
Dy(S), is the smallest value of the k-diameter among all subsets of S of size k.

How to compute the minimurk-diameter was studied by [EE94, DLSS]; they gave an algorith
that returns the value i®(nlogn) time. We make some simple observations about the minimum
k-diameter.

Lemmad4.4 D, <Dy <...<D,_1<D,.

Lemma 4.5 Let a > 2 be some constant and draw a circle of radius % centered at some
point p; € S; then this circle contains at most £ — 1 points.

Proof: The maximum distance between any two points inside théeciscat most the diameter of
the circle, which i2Dy/a < Dy. If the circle were to contain at leastpoints, then thesg points
would constitute a subset of sikewith diameter less thab;, contradicting the definition aby,.

5 Map Labeling With Uniform Squares

Let L* denote the size of each square in the optimal solution of iblelgm MLUS.

Lemma 5.1 A set of five points with diameter D5 has optimal labeling squares of size at most
D5/ sin(m/10).

Proof: Call the five pointss, b, ¢, d, ande, and assume that the diameley occurs between points
andb. We then can place a regular pentaddrof side D that circumscribes all five points. Létbe
the size of the largest labeling square for the original fmats andZ’ be the largest labeling square
for the five vertices of the regular pentagBh obviously, we havd, < L'. Let the vertices of”’ be
a', b, d,d ande’. Symmetry immediately implies that the largest labelingasgs for the vertices of
P’ are arranged arounB’ in a ring such that one vertex of each labeling square is glagactly at
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Figure 2: lllustration for the proof of Lemma 5.1.

the vertex ofP’ that it labels; moreover, two adjacent labeling squares’idf € P’ meet at the tig

of one of the two edges, sayt and these two edgest andb’t together witha’d’ form a right triangle
with the inner angles at', ', ¢ being2x /5, /2, /10 respectively (Figure 2). The ratio of the sides
of P’ over the sides of the labeling squares is easily seen tfye/10). ThusL’ is 1/ sin(m/10)
times the edge length @', which is D5 by construction; thus we have < L' = D5/ sin(7/10).

Theorem 5.2 A set S of point has maximum labeling squares of size at most D5 (S)/ sin(7/10).

Denote the distance between two poiptsp; € S by d;; and denote by’; the circle centered at
point p; € S with radiusD“"T(S). By Lemma 4.5,(; contains at most four points ¢f (counting its
center). Denote by, the number of points of within C;; in the following, we assume, without loss
of generality, that we have; = 4. We shall place a square of si%% at each poinp;; note that

the largest dimension of this square is its diagonal, whiaSwangthDj—ff).

We now proceed to describe the algorithm; since the alguoréffectively places the squares, we
state the main result as a theorem and prove it constructimeproviding the algorithm. We then
analyze the running time of the algorithm.

Lemma 5.3 Given a set S of points to be labeled with uniform squares, there exists a set of

i 1~ Ds(5)
square labels, each of size L' > Tovs

Proof: Our proof is a recursive procedure that labels each poiats&lect some point; and show
how to place a square of siZé touchingp;. Assume, without loss of generality, that we haye= 4
and denote the other three pointsnby p;, p, andp;. Consider the circle’] centered ap; with



radius Dgf)—half the radius ofC;. We distinguish four cases, depending on how many;op,

andp; fall within Cj.

1. C] only containg;,. This case is easy. We can lalpelwith a square in any arbitrary position:
sincep; is at least two diagonals away from any of its neighbors,abeling square cannot
affect the positioning of labeling squares for its neiglsho®ur procedure thus removes
recursively labels all remaining points, then labgls

2. Cj containsp; and one more pointLet that point bey;. As in the previous case, note that the
positioning of the label fop; cannot directly affect the positioning of the labels fgrandp;.
Thus we need only plagg’s label so as to avoid restricting the placemenp &6 label. To do
this, we removep;, recursively label the remaining points, then lapglsince only the label
of p; can affect the label o;, we can always rotate the label pf if needed (if it actually
containsp;, we need to rotate it; but then also, the rotation cannott#iay other labeling
squares) and then labgl itself.

3. Cj containsp; and two more pointsLet these points bg; andp,. We further subdivide this

case as follows. Lef}’ be the circle centered g of radius Diff), half the radius of’; and a

quarter of the radius af’;. We now distinguish three cases, according to the numbevinfp
within C’ —as illustrated in Figure 3.

() )

(@) (b) ()

Figure 3: Case 3 in the construction

(@) C7 only containsgp;. In that case, we removg, recursively label the remaining points,
then come back to labg} itself. Because; andp;, are at least one diagonal away from
p;, their labels will not includey; and we can always place a labeling squane atithout
intersecting the labels @f; andpy.

(b) C}' containsp; and one more pointLet this additional point be;. Thus we have;
andp; in C, pi, in C; but notC}’, andp; in C;, but notC;. If p; is at least 3 diagonals
away fromp;, we can treat this case exactly like sub-case (c) below. &kssme that
p; is less than three diagonals away. We proceed much as inZgsbdyve: we remove
p;, recursively label the remaining points, then return teelah. The labeling square of
pj mMight containp;; in that case, we rotate it to a position where it does notset the
labeling square op, and does not contaip;. (Given the constraints defining this case,
one can verify that such a position can always be computed.)



Then we place a square g since there are at most two constraints, i.e., the labeling
squares op; andpy, this can be done in constant time.

(c) C}' containsp; and two more pointsin this case, we remove all three points at once,
recursively label all remaining points, and then proceethbel our three points. The
only constraint on the labels @f, p;, andp,, is due to the labeling square pf. Note
that the labeling square pf cannot include any of the three points to be labeled and thus
need not be altered. Itis now a simple matter to place ladpslijuares for all three points.

4. C} containsp; and three more pointsBy the same reasoning as in case 1, the labeling of the
four points cannot affect the labeling of any other poinSpbecause all other points 6fare
at least two diagonals away. We know that we can label anyesatb$our isolated points with
arbitrarily large squares; in particular, we can label alrset with squares of the desired size.
Thus our procedure removes all four points, recursivelglathe remaining points, then labels
the four points as discussed.

This recursive procedure starts by computing(S), which takesO(n log n) time. At each step
in the recursion, the work done is constant, so that the prugeeruns in linear time after determin-
ing D5(S). Overall, then, our approximation procedure rungifn logn) time. Combining these
observations with Theorem 5.2, we get our main result for LU

Theorem 5.4 The MLUS problem can be approximated to within a factor of 8v/2/ sin(7/10)
in O(nlogn) time, where n is the number of features to be labeled.

6 Map Labeling With Uniform Circles (MLUC)

Let R* denote the size of the circles in the optimal solution of thebfem MLUC. We derive an
upper bound for this size as a functionfof (S), much in the same fashion as we bounded the size of
squares as a function éf; (.S). The basic approach is similar: we consider just three pdarming

a set of diametePD3 and bound the size of the circle as a function/nf larger sets of points must
yield circles that are no larger. By arguments similar tosthn the proof of Lemma 5.1, we can
show the following.

Lemma 6.1 A set of three points with diameter D3 has optimal labeling circles of size R* <

(2+V3) - Ds.

Proof: The three circles must be tangent to each other—otherwéseanw shift them so as to have

them all non-tangent, at which point we can increase theeti@nof each. The three points in the set
form a triangle nested inside the area delimited by the thiretes; the smallest triangle that can be
fit within this area, with one vertex on each circle, is an &deral triangle, as shown in Figure 4. It

is easily verified that the ratio of the diameter of the ciighe side of the outer equilateral triangle

formed by the centers of the circle) to the sifig of the inner equilateral triangle (& + v/3).

Theorem 6.2 A set S of points has maximum uniform labeling circles of diameter R* <

(24 V3) - Ds(5).

Let C; denote the circle centered at pojpte S with radius 22%) wherea > 2 is a constant. By

(07

Lemma 4.5,C; contains at most two points, including itself; let p; be the other point. Note that
C;, C}, and their intersection all contain exactly two points, ep; andp;.
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Figure 4: The largest labeling circles for 3 points

We now present our approximation procedure; as in the MLUBlpm, we state a theorem
describing our procedure and give the procedure itself asat.p

Lemma 6.3 Given a set S of points to be labeled with uniform circles, there exists a set of

circular labels, each of size R’ > —D;S’.

The proof is quite simple. Note thaf; can contain at most two points, spyandp;. We can label
these points with circles of diamet@zf%s) that are centered on the lipgp; and are placed opposite
each other, avoiding the central segmggpi;; by construction, these circles cannot intersect circles
attached to points outsidg;.

Proof: ConsiderC;, which contains botty; andp; (obviously, if C; contains just one point, we
can label it and proceed). We lalglandp; with circles of diameterD;—f); these circles have their
centers on the ling;p; and are placed opposite each other, avoiding the centraiese@;p;, as
illustrated in Figure 5. Clearly, these circles do no irgets Any labeling circle associated with a

Figure 5: How to label points in MLUC

third pointp, cannot intersect either circle, becaygeis outside both”; andC; and thus at least
D"’T(S) away fromp; andp;, which is twice the diameter of the labeling circles.

Using the results of [EE94], we can computg(S) in O(nlogn) time. We can determine
the nearest neighbor of each point (fhefor our p;) in O(n logn) time using standard techniques.
Placing the labeling circles takes constant time per cir@lleus our approximation algorithm runs
in O(nlogn) time overall. Combining these observations with Theore? e get our main result

about MLUC.



10

Theorem 6.4 The MLUC problem can be approximated to within a factor of 4(2 + v/3) in
O(nlogn) time, where n is the number of features to be labeled.

7 A Bicriteria Approximation Algorithm

We now consider the variant of the map-labeling problem ictvia few point features are allowed
to remain unlabeled. We present a polynomial-time appration scheme for this problem. Define a
(bicriteria) polynomial-timg «, 3)-approximation algorithm for the MLUS problem as a polynatni
time approximation algorithm that finds a placement of astleacircles such that the size of each
circle is at leasys times the size of a circle in an optimal solution that pladedes at each point.
Such an algorithm is a bicriteria approximation, governgdandg.

The basic idea behind our approximation algorithm is to trans a number of geometric inter-
section graphs and solve the maximum independent set prdioleeach of the graphs. We then
argue that a good approximate solution for the map-labgdno@lem is given by the solution to one
of the graphs. We first consider a restriction of the MLUS pobin which each square must be
placed so that its sides are parallel to the axes; call tiislpm MLUS-AP.

An undirected graph is square graphf and only if its vertices can be put in one-to-one corre-
spondence with uniformly-sized squares in the plane in sughy that two vertices are joined by an
edge if and only if the corresponding squares intersect. g8¢ame that tangent squares intersect.)
For any fixed\ > 0, we say that a square graph is-grecision square grapif the centers of any
two squares are separated by at |Ieasines the size of a square.

We note that the recognition problem for square graphs waently shown to be NP-hard in
[BK93]; i.e., finding if a given graph represented using adjacy matrix (or adjacency list) repre-
sentation can be realized as a square graph is “hard.” Bauiopurposes, the square graph shall be
specified using a geometric representation.

We first discuss the relationship between MLUS-AP problechtae problem of finding a maxi-
mum independent set (MIS) in a set of squares (square gr8pppose, for a moment that we know
the size the optimal squares for the MLUS-AP problem. Funtioee, let us suppose, we also know
the position of each point feature on the correspondingretglaoundary. It is clear that these squares
are non-intersecting (i.e form an independent set in theesponding square graph). But we do not
know (i) the optimal size of the squares and (ii) the positibthe feature on the square. We solve
these problems as follows. The optimal size of the squaresnsore tharD;(.S) and hence by doing
a search over the rand@ D5 (.5)] using steps ofl + €) we can find a good estimate of the optimal
size. As for the position of the point on the square, we onegnagiscretize the possible positions
the point can be. This will roughly beéand is a polynomial for each> 0. The final problem we
need to tackle is that of finding an independent set in a sqgraph. The maximum independent set
problem is well known to be NP-hard [GJ79], even when rdsimico square graphs. But as shown
in [HM+95], given a geometric specification of the squarke, MIS problem has a polynomial-time
approximation scheme. We use this to find a near optimal at@le of non-overlapping squares to
be placed at the feature points.

We reduce the MLUS-AP problem to that of finding maximum inglegeent sets for a number of
squares graphs. Specifically, given an instasiad MLUS-AP, we construct (log 2D5(S)) square
graphs, each of size polynomial {1 For each square graph thus created, we obtain an appreximat
solution to the Maximum Independent Set problem—for whigholynomial-time approximation
scheme is known to exist in a variety of geometric graphs [[9B]+

We recall some basic definitions and results before we dtatalgorithm.
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Definition 7.1 For any fixed A > 0, consider a finite set of unit squares in the plane where
the centers of any two disks are at least A apart.

A \-precision unit square graph G(V, E) corresponding to the above set of unit disks is
defined as follows: The vertices of G are in one-to-one correspondence with the set of unit
squares and two vertices are joined by an edge iff the corresponding squares intersect.

The definition of\-precision unit disk graphs and other regular polygonsidlar. Our definition
of A-precision unit square (disk) graphs is motivated by tweeokstions. First, our reduction to unit
sgaure graphs obtained by discretization of the possildéipas for a label naturally defines)a
precision unit sqaure graph. Second, practical problen@nwnodeled as problems on unit disk
graphs, seldom have unit disk centers placed in a continiaghgon. For example, in VLSI designs,
\is a parameter determined by the fabrication process. beaeen that grid graphare-precision
unit disk graphs, for ang < \ < 2. Also, each unit disk graph is&precision unit disk graph for
somel < A < 2. Itis also easy to see thatprecision unit disk graphs need not be planar. We also
recall the concept of graphs drawn in a civilized manneress\extensions described subsequently
use this concept.

Definition 7.2 [Te91] For each pair of reals » > 0 and s > 0, a graph G can be drawn in R?
in an (r, s)-civilized manner if its vertices can be mapped to points in R? so that

1. the length of each edge is < r, and

2. the distance between any two points is > s.

Theorem 7.3 [HM+95] For all fixed r, s > 0, given a graph drawn in an (r, s) civilized manner,
there are polynomial time approximation schemes for the problem MAXIMUM INDEPENDENT
SET. m

It can be seen that for any> 0, a A-precision unit disk graph can be drawn if2a\)-civilized
manner. Thus, Theorem 7.3 also yields approximation scedorea number of problems fox-
precision unit disk graphs.

Theorem 7.4 For any fixed e > 0, given an instance S of n points of MLUS-AP, ALGORITHM
LABEL finds a placement of at least (1 — €) - n squares of size at least 1%5 - OPT', where
OPT denotes the size of the squares in an optimal solution.

Proof: SinceOPT < 2Ds(S), there exists some iteratiol such that(l + ¢)* < OPT <
(14 €)¥'*1. By the construction of the square graph in Step 2a, it isr ¢hest the optimal solution to
the independent set problem for the set of squéesasn elements; thus Step 2b finds a placement
of myr > (1—¢)-n squares. Since we choose the lardethtat gives a placement of at leg$t—¢) -n
squares, it follows that the size of the squares in iteratiois at least(1 + €)¥" — 2¢(1 + €)¥'. The
second term in the expression arises due to the discretizafithe possible positions at which the
square could be placed. Thus we have

1+ —2e(14+6)* > (1 +e)F (1 —2¢) > ((11;2:)) .OPT.

LA grid graph is a unit disk graph in which all the centers haverdinates that are even integers.



12

ALGORITHM LABEL:

e Input: A set of points{py, ..., p,} in the plane and an accuracy requirement 0.

e Output: A placement of isothetic (axis-parallel) squaggs. . ., S, such thap; lies on the
boundary of squar§; and the squareS; are disjoint;n > (1 — ¢€) - n, and the size of each
square is at Iea% times the optimal solution.

e Procedure:

1. Letr denote the smallest integer such thiat+ €)” > 2D5(S).
2. Fork <~ 1tordo

(a) Construct a square graph, with squares of Gize €)* — (1 + ¢), as follows. Let
g = [1]. On each side place marks 2D;5(S) apart and label these marks by
indicesn, . .., n4y. For each poinp; and each mark, place a copy of a squar
in four ways so that mark; coincides withp;. Denote the set of squares thus
obtained byS;, = {Si,..., Sign}-

(b) Solve the Maximum Independent Set problem for the setjoéesS;, using the
algorithm of [HM+95]; letm, be the size of the independent set returned by|the
algorithm.

D

3. Letk* denote the largest value bfobeyingmy > (1 —¢) - n.
4. The solution output by the heuristic consists of the plaeat in iterationk*.

Theorem 7.5 For any fixed e > 0, our algorithm runs in O(rnlog D5(S)) time.

Proof: Observe that, for each fixed > 0, the number of squares i}, is [2] = O(n). The
maximum value of- is O(log D5(S)). Steps 2a and 2b take(n) time for each iteration, since, for
each fixedt, we obtain a\-precision square graph withsquares. The algorithm of [HM+95] runs in
linear time. All other steps take constant time. Note thgtD5(.S) is bounded by a polynomial in
the input size, since it is the logarithm of a distance betwes points given (by their coordinates)
in the input.

For the case of the map labeling problem of [FW91], we carh&rrreduce the running time
by observing that we have only four possible positions facpig each square. Also note that our
algorithms extend to the case when we are allowed to pladeraniectangles at each point feature.
Indeed, although the basic idea is quite simple, it is vernyegal and extends to a large number of
variants of the map labeling problem, some of which we skbg&tbw.

1. Arbitrary orientation: We have already discretized (through the system of marks)akition
of the point on the boundary of the labeling square; to haadbitrary orientation, we also
discretize the angle of the labeling square with the hotedoaxis. Specifically, we divide
the 27 radians in discrete subanglesefthus yielding2w /e possible angular positions. The
algorithm otherwise proceeds as outlined in the case of MAPSalbeit with higher running-
time factors.

2. Circles and other regular polygonsThe algorithm can easily be extended to other regular
polygons. (The algorithm of [HM+95] works on many variatsoof geometric graphs, not just
square graphs.) It can also be applied with a slight modidinab circles: we then use the
maximum independent set algorithm for unit disk graphsrgindHM+95].
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3. Placement with non-uniform squaregissume that different-sized squares can be used under
the condition that the ratio of the sides of the largest tosimallest square be bounded (a
reasonable aesthetic requirement). In Step 2a, we plaeceesaf different sizes at each point:

(1 + ¢)" denotes the size of the smallest square and other squaresated as required by the
problem. In Step 2b we again solve the maximum independérireblem for the induced
graph. This time, we use the algorithm given in [HM+95] to faa¢hrge independent set for
(p, q)-civilized graphs

4. Placement for weighted case:
The ideas also extend to the case, when certain positiongiame more weight than others
— the resulting case is one way to model preferences amongatimis positions of placing
a label. The result follows by observing that the weightedependent set problem for
precision unit square graphs has a polynomial time appratiém scheme [HM+95].

5. Placement of labels with same heigRecently [ABS97] have considered placement of labels
that all have the same height. The problem is motivated iladpgdroblems for scientific ap-
plications (see [ABS97] for more details. Our results edteaturally to this case also. The
original algorithm given in [HM+95] although described fonit squares can be extended to
handle this case also. The result follows by observing theving:

(a) The set of rectangles (with same height) can be paritianto disjoint sets by horizontal
lines spaced appropriately apart (depending on the refjpggformance).

(b) The intersection graph induced by the set of rectanglesse center lies between two
consecutive horizontal lines that dreinits apart have treewidth(k) that is independent
of n. The treewidth depends on the discretization factor used.

The result also extends to the case of ellipses with a boumileal (or major) axis. The details
are similar and thus omitted.

6. Placement for vertices of a graph:
Consider a generalization of the map labeling problem inctvhive are given a graph in
the plane and we wish to label the vertices of the graph. Tbeldamust be mutually non-
intersecting and must not intersect the the edges of thehgréip such a case, we do the
following: every time we construct a square graph, we rentbase squares that overlap with
any of the edges. The algorithm is otherwise similar and tsmlze extended to partial overlap
of the squares.

7. Placement for rectilinear line featuresDur approximation algorithm extends to labeling line
features in which the line segments are rectilinear. We aidltuss this in detail in the next
section.

8 Labeling a Rectilinear Map

In this section we study the problem of how to label a rea#inmap. As discussed in Section 3 each
line segment can be labeled in one of three possible waysayat a rectangle is\alid labelfor

a line segment if the rectangle is positioned in exactly drtbree possible ways with respect to the

line segment; among other things, a valid label has as lehgtlength of the segment it labels and

we refer to its other dimension as its width.
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Definition 8.1 An instance of the problem of Rectilinear Segment Labeling (RSL) consists
of n rectilinear line segments (features) in the plane and a positive integer bound B. The
guestion is whether there exists a placement for n rectangles, each of width B, such that

e no two rectangles intersect; and
e each rectangle is a valid label for a distinct segment.

We first present an optim#& (n log n) time algorithm for the case when all segments are horizontal
and then present an approximation algorithm for the gemeadilem.

8.1 An Optimal Solution for Horizontal Segments

Let then horizontal segments be denoted1 < i < n; without loss of generality, we assume that
no two segments have the sageoordinates. Theertical neighborsf a segment; are those seg-
ments that are first hit by; whens, is translated vertically. It is well known that the set ofaténs
“is a vertical neighbor of” (also called a trapezoidal depasition or a vertical visibility map, i.e.,
VVM) can be computed irD(n log n) time, e.g., through simple scanning (as was first observed by
Bentley and Ottmann [BO79]). The resulting map, which wdlstell the VVM, is linear in size
and can be used for point location in logarithmic time. Wellshssume that the map has guards,
i.e., segments with a left endpoint left of allinput segments and a right endpoint right of all input
segments, with one segment above all others and anothev blothers.

LetrlV(s), r}V (s), andr}Y (s) denote the rectangles of widki placed respectively above, below,
and across horizontal segmenand letrecyy (s) denote the set of all three possible rectangles.

Lemma 8.2 Let s; and s; be two segments such that neither is a vertical neighbor of the
other. If the optimal width of labels is W, then recy, (s1) will not first intersect recyy (s2) and
vice versa.

Proof: Since neither segment is vertically adjacent to the othere must exist segmenig ands;
such thatsy, is the first neighbor of; when translated towarsl; ands; the first neighbor of; when
translated toward;,. If any member inrecyy (s;) intersects any member irecyy (s;) then either
some elements inecyy (s;) has already intersected some elements:ify (s;) or some elements in
rec(sj) has already intersected some elements:ify (s;).

While rather obvious, this lemma has an important coroildime number of potential intersec-
tions among labeling rectangles that we need to considef:i3. Consider the directed acyclic graph
G = (V, E) where each node corresponds to a segment and there is arreaigesftexs; to s; if
there is a vertical visibility edge between segmentands; ands; is belows; (i.e., in the visibility
map make the vertical visibility edges directed upwardshasn vertices and)(n) edges and can
be topologically ordered i®(n) time; let the ordering of the nodes bg s», . . .,s;,+1, Wheresy and
sn+1 are the two guards. For each segmgntve maintain three variable®/;;, W;s, andW;s, with
the following interpretation: after having processed segts;, W;;. is the largest possible height of
a feasible solution among all (transitively closed) predsors ofs;, subject to the constraint that
segments; is in statek. Initially we set alliW;;’s to infinity. Processing; takesO(1) time per
incoming edge from a predecessor segmentJsing the quantitie$V;;, W;», andW;3, we update
Wij1, Wja, andWj3 in O(1) time as follows; we usd;; to denote the vertical distance betwegn
ands;.

o Wji1 = min{Wji, max{x,z2,x3}}
wherez; = min{Wji,d;;}, zo = min{Wjo,2d;;/3}, andz3z = min{W;3, d;;/2}.
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o Wis = min{Wj, max{y1,y2,y3}}

Wherey1 = min{Wﬂ, 2dij}: Y2 = min{Wig, dij}: andy3 = min{Wig, 2d1]/3}
e Wj3 = min{W;3, max{z1,22,23}}

Wherez1 = Wi, 29 = min{Wig, 2dij}v andz3 = min{Wig, dz]}

These formulas are self-explanatory. After processing (the second guard) the optimal solution
vopt 1S €qual tolV,,3. We can thus state the first of two main results about the R8hl@m.

Theorem 8.3 The problem of labeling a set of horizontal segments can be solved optimally
in O(nlogn) time, which is optimal in the algebraic decision tree model of computation.

Proof: The upper bound follows easily from the above discussior.Udé a linear time reduction
from the Min-Gap problem of, reals, which is known to have a lower bound i log n) under the
algebraic decision tree model of computatj&®83, to show that computing the optimal valug,
when alln segments are horizontal, has the same lower bound.

Givenn realsY = {y,...,yn}. The segments are constructed such that the two endpoints of
them have the same x-coordinates. (In other words, all setgnaee placed in the same vertical slab.)
We simply construct two segments corresponding to ggcbne with y-coordinatey; + ¢, the other
one with y-coordinate; — . We thus have a total @» segments. Sinceis independent ofy, ..., y,
and can be set arbitrarily small, to maximize the height efl#tbeling rectangles each segment can-
not be the center of a labeling rectangle (i.e., each one bausither the top or the bottom edge of
the labeling rectangle).

Clearly, |y; — yi| is the Min-Gap ofY” = {yi, ..., y, } if and only if the maximum height of the
labeling rectangles i§y; — yi| — 2¢)/2. If there is somey; = y;, i.e., the Min-Gap ol is zero, the
maximum height of the labeling rectangles is

8.2 An Approximation Solution for the General Problem

If we allow two of the three possible placements for a labgtl{gling the placement athwart the
segment), then the problem can be modelled as a series of @8AEms and solved i@ (n?) time
[FW91]. Denote the optimal solution to this restricted versionhaf problem byy* and denote the
optimal solution to our version (with three choices of plaeat allowed) by,,;.

Theorem 8.4 v, /v* < 2.

Proof: Consider the solution of optimal valug,;. For each rectangle in states 1 or 3, shrink its
width to half. For each rectangle in state 2, simply remove @frits halves to make it a rectangle in
state 1 or 3 with half its original width. Clearly the new sin is a valid labeling of value,,; /2

in which all rectangles are in state 1 or 3 only. Since therétlyo finds the best solution under
this restriction, we must have® > v,,;/2. It is easy to construct an example where this bound is
achieved. We leave this as a simple exercise for the readers.

9 Other Extensions

In a recent paper [ABS97] considered tlabel placement problem— the problem of placing a
largest possible set of labels from among a set of candiddkel configurations. It is clear from
the discussions in the preceding sections that th&xMum INDEPENDENT SET problem for set of
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geometric objects is the same as ldigel placement problerronsidered in [ABS97]. As a result, we
note that the approximation algorithms and schemes fomthepiendent set problem for geometric
objects given in [HM+95, MB+95] yield efficient solutions the label placement problerim two
general cases, namely (i) a 5-approximation algorithmHerdase when the labels are circular and
of different sizes, (ii) polynomial time approximation sches for the case when all the labels are
squares of the same size, or other regular polygons.

Our comments are also applicable to the labeling of reetlifabel placement problem consid-
ered earlier; as these simply correspond to placing labetsare rectangular boxes.

10 Concluding Remarks

We have presented a number of approximation algorithmsddants of map labeling problems.
One of the major questions regarding this paper is the caatipaal complexity of the MLUS and
MLUC problems. Are they NP-complete? Is approximating theithin an arbitrarily small factor
NP-hard? And are our approximation guarantees the begbpogsth reasonable running times? A
more general and more realistic (but also much harder) @nolbhn be formulated as follows: given a
graph embedded in the plane, derive a labeling of the verfioeder the same conditions as examined
in this paper) such that no label intersects any edge in #igghgVe note that the general problem in
Section 8, was recently shown to be polynomially solvalsieXin? log n) time) [PZC97].
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