
Competitive Robot Mapping with HomogeneousMarkersXiaotie Deng and Andy MirzaianDepartment of Computer Science, York UniversityNorth York, Ontario, Canada, M3J 1P3fdeng, andyg@cs.yorku.ca.Abstract: We consider the robot exploration problem of graph maps with homogeneousmarkers, following the graph world model introduced by Dudek et al. [DJMW]. The environ-ment is a graph consisting of nodes and edges, where the robot can navigate from one node toanother through an edge connecting these two nodes. However, the robot may not distinguishone node (or edge) from another in this unknown graph. All the nodes (edges) look the same.However, at each node, the robot can observe a consistent local relative orientation of itsincident edges, that is, a cyclic order of edges incident to the node. To assist the robot's taskof mapping the environment, it can put homogeneous (i.e., identical) marks on nodes or edgeswhich can be recognized later.The total number of edges traversed when constructing a map of the graph is often used asa performance measure for robot strategies. However, since the graph is unknown, a strategymay be e�cient in one situation but not in others. Thus, there is a conceptual questionabout what is an optimal strategy. In this paper, we apply the competitive analysis method[ST,BRS,PY] for robot explorations. In particular, we compare the cost for constructing amap with the cost for verifying the same map and call their ratio by competitive ratio, anapproach initially applied to a similar mapping problem by Deng and Papadimitriou [DP].That is, we call a strategy optimal if it minimizes the worst-case ratio (over all allowableembedded graphs) of the total number of edges traversed when constructing a map of thegraph to the optimum number of edges traversed in verifying the correctness of a given map ofthe same graph. If this competitive ratio is bounded above by a constant, we say the strategyis competitive. One of the main results of this paper is to show that a competitive strategyexists for mapping planar embedded graphs when the robot has n homogeneous markersat its disposal (throughout the paper n denotes the number of vertices and m denotes thenumber of edges of the unknown graph). We also show that in some alternative situations nocompetitive strategy exists. 1



1 IntroductionThe study of robot navigation has several di�erent facets which are important to robot per-formances in real world environments. One problem often discussed in the �eld of theo-retical robotics is how fast a robot can move from the current position to the destination[Ca,CR,CDRX]. Usually, the robot is assumed to move perfectly along a planned route. Inpractice, however, it is often an important problem to deal with accumulative errors in robotnavigation, which may cause the robot to lose track of its position in the real world. Severaldi�erent approaches are suggested to relate the robot position with the external features ofthe environment using a map [GMR,BCR,BRS,KB,LL]. This leads to the task of mappingfor robot navigation, i.e., learning the cognitive map from observations, as summarized byKuipers and Levitt [KL]. Many researches have been done on map construction (or mapping)by robots for di�erent external environments [DJMW,DP,DKP,RS].Naturally, one major class of maps used in robot navigation is geometric. However, anautonomous robot still has to decide how to utilize the map and match it with the enor-mous amount of observed geometric information to make its own decisions. Alternatively,qualitative maps, such as topological graphs, are also used to model robot environments[DJMW,DP,RS]. This approach often focuses on a small set of landmarks in the environment,which requires much less information comparing with geometric models. Consequently, itsimpli�es the task of robot decision makings. Kuipers and Levitt proposed a spatial hierar-chical presentation of environments consisting of four levels: sensorimotor level (a robot usessensors to detect local features of the environment); procedural level where the robot appliesits knowledge of the world to �nd its place in the world and to follow speci�ed routes; topo-logical level which describes places and their connecting paths, usually with the graph model;and metric level which includes necessary geometric information related to the topologicalrepresentation [KL, also see KB,LL]. These approaches, neither purely metric nor purelyqualitative, leaves certain features of the environment out but keeps necessary informationhelpful for robot motions.The robot's perceptions of the world can also be di�erent as a result of di�erent built-in2



sensors it carries. In many situations, it is assumed that nodes or edges traversed previouslycan all be distinguished. In contrast, it is assumed in [RS] that nodes are divided into asmall number of classes, for example, white and black colors, and can only be recognized assuch. They take the approach of Valiant learning model [Val] to obtain algorithms whichcorrectly infer the environment with high probability. Dudek et al. [DJMW] apply the worldmodel introduced by Kuipers and Levitt to a speci�c situation in which no global orientationinformation is possible. Globally, Dudek et al. divide the world into places represented bynodes in a topological (i.e., embedded) graph and use an edge between two nodes to representa connecting path between the corresponding two places. They assume in this setting nodesmay have ambiguous identi�ers, and hence assume the robot may not be able to distinguishnodes from each other. Besides the graph representation for topological structures of theworld model, a special local geometric feature is added: At each node, its incident edges aregiven a certain cyclic order. This emulates the fact that, at the crossroads, paths form acyclic order because of the local planar geometric nature of the earth surface. Dudek et al.show that it is impossible to learn the graph in general if the robot uses only informationcollected under the above restriction. For instance, this happens when every node in thegraph, representing the world, has the same number of incident edges. On the other hand,they show that in a total of O(jV j � jEj) traversals of edges, the map can be constructedwith the help of a single marker which can be put down on nodes and picked up by the robot[DJMW].In this paper, we follow the world model introduced by Dudek et al. [DJMW]. We willapply competitive analysis for the performance measurement of di�erent strategies. The con-cept of competitive analysis was �rst introduced to deal with unknown future events of onlineproblems [ST]. The main idea is to evaluate how good a strategy operating under incompleteinformation is by comparing it with the optimal solution with complete information. It hasalso been used as a measure of information-e�ciency of algorithms for robot navigations andexplorations [BCR, BBFY, BRS, DKP, DP, FFKRRV, Kl, KP, KRR, PY]. In this approach,exploration strategies S are evaluated by examining the (worst case) ratio of the cost of build-ing the map, where we initially know nothing about the world, to the cost of verifying the3



map, where we have a map of the world and the initial position-orientation of the robot inthe map, but still want to verify the correctness of the given information [DP,DKP]. Overall the possible strategies, in principle, we want to obtain the one which has the minimumcompetitive ratio.1. The competitive ratio of a strategy S is:maxM a map S(M)V (M) ;where S(M) stands for the total number of edge traversals by strategy S for the mappingproblem and V (M) stands for the minimum number of edges traversed in verifying mapM .2. Our optimization problem is to �nd a strategy which solves the following min-maxproblem. minS a strategy maxM a map S(M)V (M) :In Section 2, we formally introduce the world model and precisely de�ne the competitiveratio as applied to the robot exploration problem. With the terminology of competitiveanalysis, the main result of Dudek et al. is a mapping strategy of competitive ratio O(n). InSection 3, we show that if the robot has a single marker, then the result of Dudek et al. isasymptotically optimal within a class of fairly reasonably restricted strategies (namely, theclass of Depth-One Search strategies, to be speci�ed later). We show this by proving a lowerbound of 
(n) for the competitive ratio, and thus establish a tight bound of competitiveratio �(n). It is a nontrivial task to design a general optimal algorithm for verifying a map(a standard depth �rst search cannot accomplish this since the robot may not distinguishnew and old nodes in the real environment). However, for the particular subclass of graphsused in the lower bound proof, we are able to evaluate the number of traversals needed forverifying a map. In this section we also show that no general strategy with a single markerfor mapping general embedded graphs can achieve a competitive ratio better than 
(logn).We further discuss some results for mapping planar embedded graphs with a single marker.In Section 4, we discuss mapping algorithms with multiple markers. For embedded planar4



graphs, we propose a competitive strategy (i.e., with constant competitive ratio) to mapan unknown embedded planar graph using n identical markers. We conclude the paper inSection 5 with discussion and remarks.2 The World Model and Competitive AnalysisBased on our discussion of the world model introduced by Dudek et al. [DJMW], the worldis an undirected graph G = (V;E) embedded on a (not necessarily planar) surface. Thus, ateach node, edges incident to the node have a local planar embedding (Figure 1). Locationorientations of edges at a node provides a natural cyclic order of the edges incident to a node.When we have speci�ed an edge incident to the node as the reference edge, we can nameother edges incident to this node with respect to the reference edge.
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VFigure 1: A cyclic order of edges incident to a node.The Robot's Map of the Graph World. In the graph world model, nodes usuallycorrespond to landmarks in the real world. To deal with general situations where landmarksmay look similar by the robot's sensors, Dudek et al. assume the worst possible situation:nodes in the graph are indistinguishable to the robot. Therefore, the complete map of thegraph is a triple (V;E;S), where V and E are the node set and the edge set of the graph, andS is the collection of the local planar embeddings of edges incident to each node (Figure ??).Note that, we intentionally give an example, where, for several nodes, the cyclic orderingsof incident edges are di�erent from those in the topological graph to emphasize the generalsituation where local orientations of edges at each node can be arbitrary. In fact, given anygraph G = (V;E), given any set S of cyclic orders of edges incident to a node, there is a5
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(a) The  graph Figure 2: A map.surface on which the graph can be embedded such that the local planar embedding of edgesincident to each node follows the cyclic order of S [HR]. Even in the real world, these mayhappen because tunnels and bridges can create generally embedded surfaces.Robot Navigations with the Map. Once the map is given, the current location of therobot is matched to a node u0 on the map, and a path from the robot location is matchedto an edge e0 incident to u0 on the map, the robot can match all the paths at its currentlocation to edges on the map incident to u0. If the robot moves to another location throughone of the paths, it knows which node matches the next location it reaches. The edge thatleads the robot to the next location becomes its reference edge at the new location. Fromthe local embedding of edges incident to the new node, with the help of the reference edge,it can again match edges incident to this new node with paths from its new location. Thisallows the robot to use the map navigating from one location to another location until itsdestination.The mapping Problem. The mapping problem requires the robot to construct the worldmap through its observations while navigating in its environment. Dudek et al. show that, ingeneral, it is not possible to obtain the map of the above graph world when no external help isgiven because of some symmetric situations, but is possible to construct the map with a single6



marker which can be put down on nodes, and recognized and picked up by the robot. Analgorithm using O(jV jjEj) traversals of edges for the mapping problem with a single markeris presented by Dudek et al.We discuss several di�erent situations in this paper:1. Lower bounds for the mapping problem with a single marker.2. A competitive algorithm for the mapping problem of planar graphs with jV j homoge-neous markers.Competitive Analysis. We focus on the e�ciency issue of strategies for the mapping prob-lem. In particular, we (following that of Dudek et al. [DJMW]) de�ne the (mechanical) costof a strategy to be the total number of traversals on the edges of the graph and are interestedin mapping strategies of small cost. However, since the graph is unknown and information iscollected as the robot proceeds, the cost of mapping depends on both the strategy and theunknown graph, a typical problem in the area of optimization with incomplete information.The competitive analysis method dealing with unknown future events of online problems[ST] evaluates strategies operating under incomplete information by comparing the solutionof a strategy for an online problem with the optimal solution with complete information. Itis also used as a measure of information-e�ciency of algorithms for robot navigations andexplorations [BCR, BBFY, BRS, DKP, DP, FFKRRV, Kl, KP, KRR, PY]). In this approach,exploration strategies are evaluated by examining the ratio of the cost of building the map(where we initially know nothing about the world) to the cost of verifying the map (wherewe have a map of the world and the initial position-orientation of the robot in the map, butstill want to verify the correctness of the given information.) Hence, in our world model, thecompetitive ratio of a strategy is de�ned as the maximum ratio, over all allowable graphs,of the number of traversed edges for establishing the map to the minimum number of edgestraversed for verifying a map of the same graph. A mapping strategy with the competitiveratio c will always traverse a total number of edges which is no more than c times the numberof edges traversed in verifying the map. The smaller the competitive ratio, the smaller theextra factor for traversals in establishing a map.7



Therefore, we are interested in �nding a strategy that minimizes the competitive ratio.Note that, for robots with perfect sensors, mapping is the same as the graph traversal problem.However, without perfect sensing, mapping a graph (or even verifying a given map of thegraph) becomes di�erent from the traversal problem of the graph. We may not know thegraph even after all the edges are traversed.The Footprint Model. We introduce this as an auxiliary or intermediate model. Theresults established for this model will later be used to establish our results for the markermodel (see Section 4). For the mapping problem in the footprint model the robot leaves anunremovable trace on nodes and edges it has passed. This is equivalent to having jV j+ jEjhomogeneous nonerasable markers, one for each node and edge.An Example. Below we propose a mapping strategy in the footprint model with O(jV j�jEj)edge traversals. This strategy is adapted from the solution of Dudek et al. for the mappingproblem with a single marker.Initially, the robot is placed at an arbitrary node u in the graph. It can see all the edgesincident to u. The spatial orientation of incident edges gives their circular order around u.When the robot �rst reaches a node v adjacent to u, it can remember the edge e = (u; v) fromwhich it arrived at v. Therefore, edges incident to v can be circularly ordered with respect toedge (u; v). If the robot moves back along (u; v), it knows that it comes back to node u andits map shows the local orientation of edges it has made for node u before it went to nodev. However, if the robot comes back to u from an unknown edge, it may not distinguish thisnode from other nodes with the same number of incident edges. Thus, the local maps of anode are di�erent when the robot reaches that node from two di�erent edges and the robotmay not know how to match the two linear orders of incident edges from these two maps.To deal with these di�culties, at each stage, the robot has explored a part of the graph. Itdraws a partial map P = (V 0; s; E 0; E 00), where V 0 � V , E0 � E \ V 02, E00 are edges with justone endpoint known to belong to V 0. Edges in E0 are all the edges the robot has traversedand mapped up to this point. The robot is currently at node s, and knows how to matchedges incident to s with edges in the partial map it has at hand. Thus, when it moves outof node s along an edge in E0, it knows which node it will arrive by consulting the (partial)8



map. The ability of remembering the edge, with the help of the map, enables the robot tomatch the edges it sees at the node with the edges in the map. It is easy to conclude thatthe robot can go to any edge in E0 and any node in V 0 correctly by comparing with the map.However, the robot does not know where the edges in E00 will lead to. When E 00 is empty, weknow the whole graph.Suppose now E00 is not empty. The robot will take a closest edge e = (a; x) 2 E 00, witha 2 V 0, and move to a and then move to the other endpoint along e, and continue until anode t already with footprint is reached. Denote this chain of edges we just visited by S.Denote by (s; t) the last edge along S. We want to �nd out which node of V 0 is t. The robotcan come back along S to node a. Since a and t are the only two nodes in P incident to anincreased number of foot-printed incident edges, the robot can come back to a along S andgo through all the nodes in V 0 along edges in E 0 to �nd out which node in V 0 is t. Then thepartial graph can be updated by V 0  V 0 [ fV (S)g, E 0 E 0 [ fE(S)g.We notice that this algorithm may, in the worst case, exhaust all the nodes to validatea single edge. Thus the total number of traversals is O(mn). Similar results using thesame approach are obtained for the marker model in [DJMW], with a single marker. Bothalgorithms give a competitive ratio O(n) since any map veri�cation strategy (and hence thebest once) obviously requires at least 
(m) edge traversals. (Remark: whether there is anymap veri�cation strategy that makes at most O(m) edge traversals is an entirely di�erentissue.)3 Mapping General Graphs with One MarkerIn this section, we show an 
(logn) lower bound on the competitive ratio for the generalmapping problem de�ned in the previous section, with a single marker. In addition, we provethat the upper bound O(n) on the competitive ratio for the single marker model [DJMW]is tight under a restricted class of strategies. The lower bound is obtained by consideringa special class of graphs with O(n) edges, for which mapping takes 
(n2) traversals, andveri�cation takes only O(n) traversals.The restriction is that our strategy constructs a partial map as we explore. For a node u9



already named in the map, let ei be the i-th edge (in clockwise order) from a reference edgeref(u), to which u is incident. We restrict our strategy to choose one such edge ei, for whichthe other end node is not known on the partial map yet, (it is either not in the partial mapor it is in the partial map but we don't know which one it is). We can put our marker at theunknown endnode v of ei, then move back to the known endpoint u and traverse nodes inthe partial map to �nd if v (the node with the marker) is already in the partial map. If it is,we add this edge to the partial map. Otherwise, we can give a new name to v and add boththe edge (u; v) and node v to the partial map. We call such a strategy depth-one search. Thealgorithm of Dudek et al. is a depth-one search [DJMW].We can de�ne another class of more relaxed strategies similar to depth-one search: Weallow the robot to put the marker on an unknown end of an edge already named (the sameas depth-one search). The robot then can come back the the adjacent known node, it doesnot need to traverse all the named nodes in the partial map. Of course, if the robot �nds themarker, it can establish the edge between u and v. But if it does not �nd the marker beforeexhausting all known nodes in the partial map, it can remember nodes in the partial mapwhich cannot be the other endnode of the edge ei. Then the robot can probably try it laterafter exploring some other edges. Obviously, all depth-one strategies �t into this class. Wewill call this class relaxed depth-one strategy. We will show later, this class is more powerfulthan depth-one strategies for planar graphs.To establish the lower bounds we use a special subclass of embedded graphs we call star-shape graphs (see Figure 3).We construct a star-shape graph of 2n + 1 nodes, with one node of degree 2n, calledthe center, and 2n nodes of degree two, each called a branch node. The edges whose bothendpoints are branch nodes clearly form a perfect matching among the 2n branch nodes. (Aperfect matching is a subset of the edges so that each vertex is incident to exactly one edgein the subset. The two end-points of each edge in the matching are called matched pairs ormates.) To construct the map of such a graph is equivalent to �nd this perfect matching. Inour lower bound argument for the mapping problem, we let the adversary select this perfectmatching in such a way to maximize the robot's mechanical cost.10



(a) nonplanar (b) planarFigure 3: A star-shape embedded graph.We denote the center node by v0. At the center the robot can obtain the cyclic order ofincident edges according to the local surface at this node. An arbitrary edge can be used as thereference edge at node v0. We name this edge e1. Other edges are named as ei, 2 � i � 2n inthe clockwise order around v0. Then, we name the branch nodes according to the circular orderof edges incident to the center v0, and denote them by vi, i = 1; 2; � � � ; 2n, where ei = (vi; v0).Each branch node vi, is matched to another branch node, which is called its mate and denotedby M(i). To determine the perfect matching is equivalent to determine, for each node vi,i = 1; 2; � � � ; 2n, its mate vj . That is, to establish the correspondence M(i) = vj . Obviously,the robot can tell the center v0 from other nodes by its distinguished degree (2n) while othershave degree 2. Initially, with the above restriction on the unknown graph, the components ofthe partial graph P = (V 0; s; E 0; E 00) are V 0 = V , s = v0, E 0 = f(v0; vi) : 1 � i � 2ng, andE 00 = f(vi;M(i)] : 1 � i � 2ng. What is still unknown is which node vj , 1 � j � 2n, doesM(i), 1 � i � 2n, correspond to. For a general partial graph, the unknown edges are a subsetof f(vi;M(i)) : 1 � i � 2ng. When a relaxed depth-one search algorithm tries to determinean unknow endpoint of an edge, it must be one of M(i), for some vertex vi in the partialmap. When traversing nodes in the partial map to �nd which node is M(i), The branchnodes are indistinguishable from each other except for the one that contains the marker andthe node the robot is currently located at. Therefore, each time the robot at a branch node11



probes to see whether the current node contains the marker is equivalent to the test whetherM(i) = vj , for some values of i and j. The reason for the latter is that for a branch nodethere are essentially two ways of getting there: either through the center, in which case thecurrent node is known as vj , for some j, or through its known matched node vi, in which caseit is known to beM(i). When we come to the node in one of these ways and drop the marker,and later on if we come to a node through the alternative way and probe to see whether themarker is there, that is like testing the equality of the form M(i) = vj .The algorithm of Dudek et al. [DJMW] does the following for this particular case. Foreach i = 1; 2; � � � ; 2n, we move from v0 to vi, then toM(i). Put the marker atM(i) and moveback to v0 via vi (in the reverse order). This allows the robot to maintain the original view ofthe edges. Next, probe each of vj , j = 1; 2; � � � ; 2n until the marker is found. The adversaryreveals the marker only when the node is the only remaining possible location of the marker.Therefore, to obtain M(i), it takes 2n� 2i tests, 1 � i � n, which totals 
(n2) traversals. Toprove this holds for all possible relaxed depth-one search algorithms, we introduce a graphtheoretical lemma.Lemma 1 [Bol, Theorem 2.5, page 61] If a graph on 2n nodes has a unique perfect matching,then it cannot have more than n2 edges.Thus, for relaxed depth-one search algorithms, we start with a complete graph K2n,representing all the possible connections between the branch nodes in the graph. Each test,whether M(i) is the same as vj for some i; j, removes one edge from the graph, except if theremoval will eliminate all the perfect matchings in the graph. The above lemma states thatwe cannot determine a unique matching until there are only n2 edges left. The total numberof edges in K2n is n(2n� 1). Therefore, we need at least n(n� 1) tests before we can decidethat unique matching in the graph we try to map. 2Now suppose we are given a map of the star-graph and want to verify it. Suppose edge(vi; vj), between two branch nodes is in the map. To verify its existence in the graph we needto verify the matching M(i) = vj in the graph. To do this the robot moves from v0 to vi,then to M(i) and puts the marker at M(i). Moving back to vi then to v0 and then to vj , the12



robot checks if the marker is there, then moves back to v0. Thus, we traverse six edges forverifying a matched pair. The total veri�cation cost is thus 6n. The ratio is 
(n).Theorem 1 The competitive ratio of (relaxed) depth-one strategies for mapping general em-bedded graphs with a single marker is �(n).Proof: The above lower bound (i.e., the ratio 
(n2) for mapping over O(n) for veri�cation)for the subclass of star-shaped graphs is clearly a lower bound over all embedded graphs forrelaxed depth-one strategies. On the other hand, Dudek et al. [DJMW] give a depth-onestrategy with O(jV j�jEj) traversals for the mapping problem on any embedded graph. Sinceany strategy for verifying a map takes at least 
(jEj) traversals. This gives an upper boundO(jV j) for the competitive ratio. Therefore the matched lower bound and upper bound holdsfor both depth-one strategies and relaxed depth-one strategies.We also have the following lower bound for mapping planar graphs using depth-one strate-gies.Theorem 2 The competitive ratio of depth-one strategies for mapping embedded planar graphswith a single marker is 
(logn).Proof: We consider a planar star-shape graph with 2n branch nodes (see Figure 3(b)). Notethat, because of the planar embedding, the matching edges between branch nodes have thenested (or parentheses) property, i.e., any two such edges [vi;M(i)] and [vj;M(j)], viewed ascyclic intervals, are either disjoint or one contains the other. Consider an arbitrary depth-onestrategy using a single marker to construct the map of such a graph. So, the task of the robotis to compute the matching function between branch nodes. We let the adversary determinethe matching. Let T (n) denote the cost of such a mapping. Suppose M(i) = vj is the �rstmatching determined by the strategy. (We will let the adversary choose M(i) as explainedbelow.) Let the number of branch nodes nested with the interval [vi;M(i)] be 2k (it must beeven), and hence, the number of other branch nodes (excluding vi and vj) is 2n� 2k � 2.In the entire sequence of edge traversals suppose f(n) edge traversals were needed toinfer this �rst matching edge. Remove this f(n) edge traversals from the sequence. The13
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2n/3Figure 4: Proof of Theorem 2.remaining sequence can be partitioned in two parts (possibly removing useless or redundanttraversals), with one sequence corresponding to establishing matching edges nested within theinterval [vi;M(i)], and the other sequence corresponding to establishing matching edges notnested in the latter interval. Because each of these two remaining subproblems can be chosenindependently by the adversary, we observe the recurrence T (n) � f(n)+T (k)+T (n�k�1).Now let us explain how the adversary will choose M(i) in the �rst place. The ideais suggested in Figure 4. The 2n branch nodes are partitioned into three (roughly) equalintervals cyclically, starting from vi and going clockwise. Each of these disjoint intervals hasapproximately 2n=3 branch nodes. The adversary will select M(i) in the middle interval.Because of the parity forced by the nesting property, there are approximately n=3 candidatebranch nodes in that interval that could possibly be M(i). The adversary will let the robot'slast probe in that interval be M(i). Therefore, f(n) = 
(n). Furthermore, each of theremaining two subproblems contain a range of approximately at least 2n=3 branch nodes(i.e., respectively including the �rst and the last third of this triple partition). Thus, k �n=3 and n � k � 1 � n=3. Therefore, from the above recurrence we get T (n) � 
(n) +minn=3 � k < 2n=3 fT (k) + T (n � k � 1)g. The solution of the latter recurrence is T (n) =
(n logn). Since a map of such a graph can be veri�ed with O(n) edge traversals, thetheorem follows.We can, of course, design more complicated algorithms. However, no matter what thealgorithm is, we have the following general lower bound:14



Theorem 3 The competitive ratio for any kind of strategy for mapping general embeddedgraphs with a single marker is 
(logn).Proof: We apply the adversary argument similar to that of lower bound for sorting. Thenumber of perfect matchings in K2n (the complete graph with 2n nodes) is Fn = (2n)!n!2n . Thus,for star-shape graph of 2n+ 1 nodes, there are Fn possibilities. Initially, there are Fn graphsmatching the observation of the robot. Denote this set of possible graphs by S. If the robotnever drops the marker, it can gain no information about which one of the star-shape graphsit is exploring. So we ignore those moves when the robot carries the marker and focus onthose moves when the marker is dropped somewhere in the graph. For each graph in S, therobot knows where the marker is. In this star-shape graph, it has to move at least one edgeto reach a node di�erent from its current position. After each move, depending on whichgraph in S the robot is on, it will reach a node with or without the marker. Let S0 be the setof graphs in S where the robot does not see the marker and S1 be the set of graphs in S onwhich the robot sees the marker. The adversary then will let the robot see the marker at thenode if jS1j > jS0j, and let the robot see no marker otherwise. This will eliminate no morethan half the possible graphs from S. Thus we have to move at least 
(logFn) = 
(n logn)steps to reduce Fn possibilities to one.However, we conjecture Theorem 1 holds for all possible strategies and with the abovestar-shape graph as the example for the lower bound.Conjecture 1 The competitive ratio for any kind of strategy for mapping general embeddedgraphs with a single marker is �(n).Conjecture 2 The competitive ratio for any kind of strategy for mapping embedded planargraphs with a single marker is 
(logn).However, the star-shape planar graphs cannot be used to establish Conjecture 2. The reasonis, the following algorithm maps the star-shape planar graphs within a linear number oftraversals, using a single marker. Note, this algorithm does not work for arbitrary embeddedplanar graphs, it is designed only for planar star-shape graphs. And the strategy we use is15
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v0Figure 5: A snapshot of Algorithm 1.a relaxed depth-one strategy. This gives an evidence that the relaxed depth-one strategy ismore powerful than depth-one strategies.Algorithm 1 An algorithm with single marker for planar star-shape graphs.1. Move to the center v0 and consider incident edges in clockwise order: 1; 2; � � � ; 2n.2. Initialization: Make stack S empty, PUSH(S; 1), move to v1 and place the marker thereand come back to v0.3. for i 2; � � � ; 2n do(a) j  TOP (S), move along the path (v0; vi;M(i)),(b) if the marker is on M(i)(c) then do record M(i)  vj , POP(S), j  TOP (S), pick up the marker, movealong (M(i); vi; v0; vj) drop the marker at vj and return to v0.(d) else do PUSH(S; i), move along (M(i); vi; v0; vj), pick up the marker, move along(vj ; v0; vi), drop the marker at vi and return to v0.endNote: In the above algorithm assume TOP (empty) = 0.A snapshot of this algorithm is shown in Figure 5 at the beginning of iteration i = 8. Weclearly see that each iteration of the algorithm makes at most 8 edge traversals. Therefore,it makes a total of O(n) edge traversals. Thus we have a constant competitive ratio for16



mapping planar star-shape graphs with a single marker. For the correctness proof, it isessentially su�cient to notice the loop invariant of the algorithm. Suppose at the beginningof iteration i the contents of stack S from bottom to top are j1; j2; � � � ; jk. Then (from thenesting property) the following hold:1. j1 < j2 < � � � < jk < i,2. i �M(jk) < M(jk�1) < � � �< M(j2) < M(j1),3. the marker is at vjk ,4. the robot is at v0.4 Exploration with Multiple MarkersAs we have seen, a single marker does not lead to any competitive algorithm on generalgraphs. We now restrict our discussion on embedded planar graphs. In addition, we considerthe use of multiple markers. We show that with jV j homogeneous (or identical) markers, themap can be constructed in O(jEj) traversals. In comparison, if we have jV j distinguishedmarkers, using one for each node, the general mapping problem can be solved in 2jEj edgetraversals by a standard depth-�rst-search [DP]. The latter can be simulated using �jV j+12 �identical markers (where a bunch of i identical markers would simulate a distinguished markerlabeled i).As an intermediate step, we �rst propose a competitive algorithm in the footprint model.The footprints can of course be simulated using jV j+ jEj identical markers, one per node andedge. We then show how to maintain competitiveness while reducing the number of identicalmarkers down to jV j.4.1 A Mapping Algorithm for the Foot Print ModelHere, we introduce a competitive algorithm to explore unknown planar embedded graphsusing foot-prints (no other markers). Next, we discuss how this algorithm can be modi�ed tomap unknown planar graphs of n nodes, using only n identical markers.17
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Figure 6: A rightmost-DFS traversal of a planar embedded graph.The backbone of our algorithm for traversing the given embedded planar graph is a right-most depth-�rst-search (or rightmost-DFS, or RDFS for short). Figure 6(a) shows an example.For the moment assume we know the given embedded planar graph. The �rst node we startthe search becomes the root of the DFS-tree, and the �rst edge (e1 in Figure 6(a)) leads tothe leftmost child of the root. From then on, whenever we have to select the next edge out ofthe current node, in order to continue the DFS, we always select the rightmost one available,i.e., counter-clockwise �rst. Such a traversal of the graph gives us a DFS-tree which we calla rightmost DFS-tree. The non-tree edges are called back-edges. The crucial property of arightmost DFS-tree is that all the back-edges appear on the right shoulder of the tree. Thisforces a generalized nesting (or parentheses) structure among the back-edges. We will exploitthis property in our algorithm.Now assume we are given an unknown planar embedded graph and the robot can useits footprints to traverse the graph. How can we use the footprints on nodes and edges todetermine what kind of a node or edge we are traversing? If the robot moves from node v tonode u and �nds that there is no previous footprint on node u, then (v; u) becomes a tree-edgewith v = parent(u). In this case we can give a new name to u and add it to the partial map.However, if there is a previous footprint on u, then (v; u) is a back-edge. In this case u could18



be either an ancestor or a descendent of v with respect to the rightmost DFS-tree. Node u is adescendent of v if there was a previous footprint on edge (v; u) (and is an ancestor otherwise).In case (v; u) is a back-edge, node u must be one of the nodes in the partial map, but whichone? To determine that, we exploit the nesting structure of the back-edges by using a stackS. The �rst time a back-edge is traversed, its (known) starting end-point is pushed on thestack, and the second time a back-edge is traversed (when it already has a footprint), we popfrom the stack to determine which node of the map matches with the other (known) end ofthe edge. For each edge traversed but not yet identi�ed, one of its endpoints is put on Stack,we will determine the other endpoint later. Traversals of edges incident to a node i followthe counter-clockwise order (i.e., rightmost �rst), starting with the tree-edge connecting thenode to its parent. Thus, our exploration algorithm will �nd the rightmost DFS tree.Notation: The boolean function footprint indicates whether there is a previous footprinton the node/edge that appears as the function parameter. For a node v in the physicalgraph, degree(v) denotes the number of edges incident to v. For a node v in the partial map,RemDegree(v) is the number of edges incident to the physical node corresponding to v thatare not yet traversed from v.Algorithm 2 Mapping a planar embedded graph using foot-prints.v  the starting node. NodeCount 1. In the map name v as NodeCount.RemDegree(NodeCount) degree(v). Stack ;. Select an edge e out of node v.repeat1. if not footprint(e) then do1.1. the robot moves from v along edge e to the other end, say node u.1.2. if footprint(u)1.2.1. then backtrack from u to (its descendent) v along the back-edge e, and PUSH(Stack; v),and decrement RemDegree(v) by one.1.2.2. else Increment NodeCount by one. In the map name node u as NodeCount.Draw the tree-edge (v; u) in the map with u as the rightmost-child (so far) ofv. Decrement RemDegree(v) by one and set RemDegree(u) degree(u)�1.Set v  u.2. else if footprint(e) and RemDegree(v) > 019



2.1. then do u POP (Stack). Add the back-edge e = (v; u) from v to (its descendent)u to the map by drawing it to the relative right of everything drawn on the map sofar. Decrement RemDegree(v) by one.2.2. else if RemDegree(v) = 0 then Backtrack from v to its parent along the tree-edgee. Set v to this parent node.3. Now the robot is at node v and has incident edge e as reference. Let enext be thecounter-clockwise next edge incident to v relative to edge e.Set e enext.until v is DFS-root and RemDegree(v) = 0endA snapshot of this algorithm is shown in Figure 6(b). Figure 8 gives a complete executionof the algorithm on a small example. (In the global and local views, solid edges have foot-prints, dashed edges do not. In the map, dangling edges incident to a node are those whoseother end is not yet identi�ed. Dashed circles represent robot positions.) The above algorithmtraverses each edge no more than twice. We only need to prove that names of two nodes ona back-edge are correctly matched.Theorem 4 The above robot mapping algorithm maps an unknown embedded planar graphin the foot-print model by traversing each edge at most twice.Proof: We do an induction proof on the number of edges in the unknown graph. LetG = (V;E) be the embedded planar graph to map. If m = n � 1, the algorithm correctlyconstructs the map of tree G without performing any push or pop operations on the Stack.Now assume m > n � 1. By the induction hypothesis assume that the claim is true for allgraphs with less than m edges.Now consider an unknown graph with m edges. We denote the depth �rst search tree byT and denote by CT (e) the only cycle in T [ feg for each non-tree edge e. Consider the �rsttime we do a POP (Stack) operation. According to our algorithm, we do u  POP (Stack)and set e = (v; u) when, at node v, we see a footprint on the non-tree edge e incident to v.Therefore, e is a back-edge from a node in the subtree rooted at v. We need to prove thate = (v; u). Since this is the �rst time POP (Stack) operation is done and each POP (Stack)20



operation corresponds to a back edge, there are no other back-edges incident to the interiornodes from v to u along the rightmost depth-�rst search route T (v; u) in the RDFS-tree T .Note that one tree edge may appear twice on T (v; u). On the other hand, there is someback-edge f incident to u since u is on the Stack. Thus, the edge f and the RDFS-tree forma loop. Since we do the �rst POP (Stack) operation at node v, the other end node of fcannot be on the interior of the route T (v; u). If it is an ancestor of v on the tree, e should beincident to a node x on the route T (v; u) and the cycle CT (e) would be incident in the cycleCT (f) by planarity. According to rightmost depth �rst search, the edge e will be searchedafter f is searched. Then x will be pushed into the stack after u. a contradiction. We musthave f = e = (v; u). Also it is not di�cult to �nd out the position of f with respect to theDFS-tree edge from u to its parent (it is counter-clockwise the last traversed but unmappededge incident to u). The similar property is true for the position of e with respect to node v.To conclude the proof, consider the embedded planar graph G� f(v; u)g. Our algorithmwill proceed in the same way as above except those involving the edge (v; u). By induction,our algorithm will correctly map G�f(v; u)g. Combined with the above discussion, our claimholds for the graph G. Therefore, the theorem follows by the induction hypothesis.4.2 Exploration with n Identical MarkersWe extend the algorithm developed above to explore unknown planar embedded graphs of nnodes with n identical markers. However, the above algorithm does not trivially carry over:simply replacing foot-prints by markers would need m + n markers. In fact, we achieve thiswith fewer markers by increasing the number of edge traversals.Theorem 5 There is an algorithm for a robot to map an unknown embedded planar graph ofn nodes with n identical markers by traversing each edge at most four times.Proof: Whenever we reach a node, we put down one marker never to be removed. Thus, thisis equivalent to have a foot-print at each node. However, we are not able to put markers onedges to simulate foot-prints on the edges. Instead, we use other operations to compensatefunctions of foot-prints on edges. 21
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5 Remarks and DiscussionThe lower-bound result of this paper for the problem of mapping with a single marker showthat the algorithm proposed by Dudek et al. is an asymptotically optimal solution in terms ofcompetitive ratios. The constant competitive ratio mapping algorithm with n homogeneousmarkers for planar graphs is a signi�cant improvement over the competitive ratio two resultsfor mapping undirected graphs with distinguishable nodes (which demands �n+12 � markers.Several questions follow from this work on competitive mappings of unknown graph environ-ments.1. We have obtained a competitive algorithm for mapping embedded planar graphs withn identical markers. However, in our algorithm, the tokens are put down never tobe picked up. How many tokens do we need to competitively map embedded planargraphs if we reuse the tokens? In particular, can we design a competitive algorithmwith a sublinear number of markers?2. What is the exact competitive ratio for mapping general or planar graphs with a singlemarker?3. Can we identify other classes of practical graph maps for which competitive mapping ispossible?4. While the metric map takes too much detail into account, the graph map probably elim-inates too much information. A more interesting/practical situation is when we allowthe robot to have relatively accurate metric local views but relatively loose topologicalglobal views of the environment. What kind of mapping strategies can we construct insuch situations?5. Most of the work in competitive analysis takes distance as the performance measure.However, speeds may not be the same for two paths of the same lengths. The speed ona straight path would usually be faster than that of a zig-zagged path. How do we dealwith such situations? 23
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Figure 8: A complete example of mapping by Algorithm 2.26


