Conversions and Casting

Taken and modified slightly from the book The Java™ Language Specification, Second
Edition. Written by Sun Microsystems.

Conversion of one reference type to another is divided into two categories.

Widening reference conversion
Narrowing reference conversion

An explicit cast may or may not be required when converting one reference type to
another. The following sectionswill describe each category in greater detail.

Widening Reference Conversions

The following conversions are called the widening reference conversions:

From any class type Sto any classtype T, provided that Sisasubclassof T. (An
important special caseisthat there is awidening conversion to the class type
oj ect from any other classtype.)

From any class type Sto any interface type K, provided that Simplements K.
From the null type to any classtype, interface type, or array type.

From any interface type J to any interface type K, provided that J is a subinterface
of K.

From any interface type-to-type Qbj ect .

From any array type-to-type oj ect .

From any array type-to-type O oneabl e.

From any array typeto typej ava. i o. Seri al i zabl e

From any array type SC[] to any array type TC[] , provided that SC and TC are
reference types and there is awidening conversion from SC to TC.

Such conversions never require a special action at run time (e.g. no cast isrequired in this
casel) and therefore never throw an exception at run time. They consist simply in
regarding a reference as having some other type in amanner that can be proved correct at
compile time.

Narrowing Reference Conversions

The following conversions are called the narrowing reference conversions:

From any class type Sto any classtype T, provided that Sisasuperclassof T. (An
important special caseisthat there is a narrowing conversion from the classtype
obj ect to any other classtype.)

From any classtype Sto any interface type K, provided that Sis not final and does
not implement K. (An important special caseisthat thereisanarrowing
conversion from the class type bj ect to any interface type.)

From type Obj ect to any array type.

From type Qobj ect to any interface type.

From any interface type J to any classtype T that isnot f i nal .

From any interface type J to any classtype T that isfi nal , provided that T
implements J.

From any interface type J to any interface type K, provided that Jis not a
subinterface of K and there is no method name msuch that J and K both contain a
method named m with the same signature but different return types.

From any array type SC[] to any array type TC[], provided that SC and TC are
reference types and there is a narrowing conversion from SC to TC.

Such conversions require atest at run timeto find out whether the actual reference value
isalegitimate value of the new type. If not, then ad assCast Except i on isthrown.

Forbidden Conversions

There is no permitted conversion from any reference type to any primitive type.
Except for the string conversions, there is no permitted conversion from any
primitive type to any reference type.

There is no permitted conversion from the null type to any primitive type.
Thereis no permitted conversion to the null type other than the identity
conversion.

There is no permitted conversion from class type Sto interface type K if Sis

fi nal and doesnot implement K.

There is no permitted conversion from class type Sto any array typeif Sisnot
hj ect .

Thereis no permitted conversion from interface type J to interface type K if J and
K contain methods with the same signature but different return types.

There is no permitted conversion from any array type to any class type other than
Obj ect Or Stri ng.

There is no permitted conversion from any array type to any interface type, except
to the interface typesj ava. i o. Seri al i zabl e and O oneabl e, which are
implemented by all arrays.

A vaue of the null type (the null reference is the only such value) may be assigned to any
reference type, resulting in anull reference of that type.

Here is a sample program illustrating assignments of references:

public class Point {
intx,y;
}

public class Point3D extends Point {
int z;

}

public interface Colorable {
void setColor(int color);
}

public class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
/I Assignments to variables of classtype:
Point p = new Point();
p = new Point3D(); /I ok: because Point3D isa
I subclass of Point

Point3D p3d = p; /I error: will require a cast because a
// Point might not be a Point3D
Il (even thoughiit is, dynamically,
/' in this example.)

/I Assignments to variables of type Object:

Object 0 =p; // ok: any object to Object
int[] a= new int[3];
Object 02 = &; // ok: an array to Object

/I Assignments to variables of interface type:

ColoredPoint cp = new ColoredPoint();

Colorable c = cp; /I ok: ColoredPoint implements
Il Colorable

/I Assignments to variables of array type:
byte[] b = new byte[4];

a=b; /I error: these are not arrays
/I of the same primitive type
Point3D[] p3da = new Point3D[3];

Point[] pa= p3da; // ok: since we can assign a
// Point3D to a Point

p3da=pa; I error: (cast needed) since a Point
/I can't be assigned to a Point3D

}

Assignment of avaue of compile-time reference type S (source) to a variable of compile-
timereference type T (target) is checked as follows:

If Sisaclasstype:
o If Tisaclasstype, then Smust either be the sameclassas T, or Smust be
asubclassof T, or acompile-time error occurs.
o If Tisaninterfacetype, then Smust implement interface T, or a compile-
time error occurs.
o If Tisan array type, then acompile-time error occurs.
If Sisan interface type:
o If Tisaclasstype, then T must be Qbj ect , or a compile-time error occurs.
o If Tisaninterfacetype, then T must be either the sameinterface as Sor a
superinterface of S or a compile-time error occurs.
o If Tisan array type, then a compile-time error occurs.
If Sisan array type SC[], that is, an array of components of type SC:
o If Tisaclasstype, then T must be Qbj ect , or a compile-time error occurs.
o If Tisan interface type, then a compile-time error occurs unless T isthe
typej ava.io. Seri al i zabl e or thetype d oneabl e, the only interfaces
implemented by arrays.
o IfTisanarray type TC[], that is, an array of components of type TC, then
a compile-time error occurs unless one of the following istrue:
= TC and C are the same primitive type.
= TC and SC are both reference types and type SC is assignable to
TC, as determined by arecursive application of these compile-time
rules for assignability.

The following test program illustrates assignment conversions on reference values, but
failsto compile because it violates the preceding rules, as described in its comments. This
example should be compared to the preceding one.

public class Point {

}

public interface Colorable {

}

void setColor(int color);

public class ColoredPoint extends Point implements Colorable {

}

class Test {
public static void main(String[] args) {

}

public void setColor(int color) { this.color = color; }

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

/I Okay because ColoredPoint is a subclass of Point:

P =Cp;

/I Okay because ColoredPoint implements Colorable:

Colorable c = cp;

/I The following cause compile-time errors because

/I we cannot be sure they will succeed, depending on

/I the run-time type of p; arun-time check will be

/I necessary for the needed narrowing conversion and

/I must be indicated by including a cast:

cp=p; /I p might be neither a ColoredPoint
// nor a subclass of ColoredPoint

c=p; /I p might not implement Colorable

Explicit Casting

Some casts can be proven incorrect at compile time; such casts result in a compile-time
error. Other casts cannot be determined incorrect at compile time and as such, during run-
time they will cause an Exception.

A vaue of aprimitive type cannot be cast to areference type by casting, nor can avalue
of areference type be cast to a primitive type.

The detailed rules for compile-time correctness checking of a casting of avaue of
compile-time reference type S (source) to a compile-time reference type T (target) are as

follows:

If Sisaclasstype:

o If Tisaclasstype, then Sand T must be related classes-that is, Sand T
must be the same class, or Sasubclassof T, or T asubclassof S
otherwise a compile-time error occurs.

o If Tisaninterfacetype:

= If Sisnotafinal class, then the cast isaways correct at compile
time (because even if Sdoes not implement T, asubclass of S
might).

= If Sisafinal class, then Smustimplement T, or a compile-time
error occurs.

o If Tisanarray type, then Smust be the class bj ect , or acompile-time
error occurs.

If Sisaninterface type:

o If Tisanarray type, then T must implement S, or a compile-time error
ocCurs.

o If Tisaclasstypethatisnot final , thenthe cast isaways correct at
compile time (because even if T does not implement S asubclassof T
might).

o If Tisaninterfacetypeandif T and Scontain methods with the same
signature but different return types, then a compile-time error occurs.

If Sisan array type SC[], that is, an array of components of type SC:

o If Tisaclasstype, thenif Tisnot Qbj ect , then acompile-time error
occurs (because bj ect isthe only class type to which arrays can be
assigned).

o If Tisan interface type, then a compile-time error occurs unless T isthe
typej ava.io. Seri al i zabl e or thetype d oneabl e, the only interfaces
implemented by arrays.

o IfTisanarray type TC[], that is, an array of components of type TC, then
a compile-time error occurs unless one of the following istrue:

= TC and SC are the same primitive type.
» TC and SC arereference types and type SC can be cast to TC by a
recursive application of these compile-time rules for casting.

If acast to areference typeis not a compile-time error, there are two cases:

The cast can be determined to be correct at compile time. A cast from the
compile-time type Sto compile-timetype T is correct at compile timeif and only
if Scan be converted to T by assignment conversion.

The cast requires arun-time vaidity check. If thevalue a run timeisnul | , then
the cast is allowed. Otherwise, let R be the class of the object referred to by the
run-time reference value, and let T be the type named in the cast operator. A cast
conversion must check, at run time, that the class R is assignment compatible with
the type T, using the algorithm specified in but using the class R instead of the
compile-time type Sas specified there. (Note that R cannot be an interface when
these rules arefirst applied for any given cast, but R may be an interface if the
rules are applied recursively because the run-time reference value may refer to an

array whose element type is an interface type.) The modified agorithmis shown
here:
o If Risanordinary class (not an array class):
= If Tisaclasstype, then R must be either the same classas T or a
subclass of T, or arun-time exception is thrown.
= If Tisaninterfacetype, then R must implement interface T, or a
run-time exception is thrown.
= If Tisan array type, then arun-time exception is thrown.
o If Risaninterface:
= If Tisaclasstype, then T must be bj ect , or arun-time exception
isthrown.
= If Tisaninterface type, then R must be either the same interface as
T or asubinterface of T, or arun-time exception is thrown.
= If Tisan array type, then arun-time exception is thrown.
o If Risaclassrepresenting an array type RC[] -that is, an array of
components of type RC:
= If Tisaclasstype, then T must be bj ect , or arun-time exception
isthrown.
= If Tisaninterface type, then arun-time exception is thrown unless
Tisthetypej ava.io. Seri al i zabl e or thetype d oneabl e, the
only interfaces implemented by arrays (this case could dlip past the
compile-time checking if, for example, areferenceto an array were
stored in avariable of type (oj ect).
= If Tisanarray type TC[], that is, an array of components of type
TC, then arun-time exception is thrown unless one of the
following is true:
= TC and RC are the same primitive type.
= TC and RC are reference types and type RC can be cast to
TC by arecursive application of these run-time rules for
casting.

If arun-time exception isthrown, it isad assCast Except i on.
Here are some examples of casting conversions of reference types.

public class Point {
intx,y;
}

public interface Colorable {
void setColor(int color);

}

public class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoint extends Point { }

class Test {
public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
Colorable c;

/I The following may cause errors at run time because
I/ we cannot be sure they will succeed; this possibility
I is suggested by the casts:
cp = (ColoredPoint)p; I/ p might not reference an
Il object which is a ColoredPoint
/I or a subclass of ColoredPoint
c = (Colorable)p; /I p might not be Colorable

/I The following are incorrect at compile time because
/I they can never succeed as explained in the text:

Long | = (Long)p; /I compile-time error #1
EndPoint e = new EndPoint();
c = (Colorable)e; /I compile-time error #2

}

Here the first compile-time error occurs because the class types Long and Poi nt are
unrelated (that is, they are not the same, and neither is a subclass of the other), so a cast
between them will always fail.

The second compile-time error occurs because a variable of type EndPoi nt can never
reference a value that implements the interface Col or abl e. Thisis because EndPoi nt isa
final type, and avariableof afi nal type aways holds avaue of the same run-time
type as its compile-time type. Therefore, the run-time type of variable e must be exactly
the type EndPoi nt , and type EndPoi nt does not implement Col or abl e.

The following example uses casts to compile, but it throws exceptions at run time,
because the types are incompatible:

public class Point {
int x,y;
}

public interface Colorable {
void setColor(int color);

}

public class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
Point[] pa= new Point[100];
I/l The following line will throw a ClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;
System.out.printin(cpa[0]);
int[] shortvec = new int[2];
Object 0 = shortvec;
/I The following line will throw a ClassCastException:
Colorable ¢ = (Colorable)o;
c.setColor(0);

