
1

3/13/01 1

COSC 2011
Section N

Instructor: Bill Kapralos

Tuesday, March 13 2001

Overview

nContainers
uInspectable Containers

nAbstract Data Types
uTrees, Binary Trees

nPseudo-Code

n Array Based Implementations
uStack
uQueue

nLoop Invariants (Time Permitting)

COSC 2011 Section N
Winter 2001 03/13/2001

2

Containers (1)

n Definition

u A data structure that stores an organizes a
collection of objects called the elements of the
container

u Provides access to them through the methods of the
abstract data type.

u Examples include: stacks, queues, dequeues,
vectors, lists, sequences etc.

n Four main Categories for Methods of a Container

u Query Methods: Return info. on the container or
specific elements.

u Accessor Methods: Return elements or positions
of the container

u Update Methods: Change the container by adding
or removing elements or altering the relation
between elements.

u Constructor Methods: Generate an instance of the
container.

COSC 2011 Section N
Winter 2001 03/13/2001

3

Containers (2)

n Inspectable Containers

u Containers that do not provide update methods

u Support only read-only access and cannot be
modified

u Protect their elements from erroneous or malicious
update attempts by other objects

u Cannot be used when their elements are subject to
updates during the life of their container.

u Using inheritance we can get protection of inspect
able containers while still getting flexibility of
update methods

COSC 2011 Section N
Winter 2001 03/13/2001

4

Containers (3)

Inspectable Vector

 size()
 isEmpty()
 elemAtRank()

Vector

 replaceAtRank()
 insertAtRank()
 removeAtRank()

u InspectableVector that contains only the query
methods and the accessor method

u Redefine a Vector as an ADT that inspects the
inspectableVector ADT and adds the update
methods

n Revised vector is equivalent to the original one.

n But now we can reference an instance of the vector
with a variable of type InspectableVector thus allowing
only the query and accessor methods

n Can also restructure the List and Sequence ADTs by
introducing inspect able versions of them.

2

COSC 2011 Section N
Winter 2001 03/13/2001

5

Trees: Terminology and Basic
Properties

n Tree Abstract Data Type
u Stores elements hierarchically
u A set of nodes storing elements in a parent-child

relationship.
u Top element r is called the root.
u Each node v of tree T except for rhas a parent node u.
u Tree cannot be empty!

« Will always have at least the root node

n Definitions
u Child:

If node u is the parent of node v, then v is a child of u.

u Siblings:
Two nodes which have the same parent.

u External Node:
A node which has no children.

• Also known as a leaf.

u Internal Node:
A node which has at least one child.

COSC 2011 Section N
Winter 2001 03/13/2001

6

Trees: Terminology and Basic
Properties (continued)

n Definitions (continued)

u Ancestor:
Either the node itself or an ancestor of the parent

of the node.

u Descendant:
A node v is a descendant of a node u if u is an

ancestor of v

u Descendant:
A node v is a descendant of a node u if u is an ancestor

of v

u Subtree:
The subtree of tree T rooted at a node v is the tree

consisting of all descendants of v in T (including v
itself).

u Ordered Tree:
A linear ordering defined for the children of each node.

We can identify the children as being the first,
second, third etc.

u Note the Recursive Definitions for Ancestor,
Descendant and Subtree!

COSC 2011 Section N
Winter 2001 03/13/2001

7

Trees: Examples

COSC 2011 Section N
Winter 2001 03/13/2001

8

Trees: Another Example

n Internal nodes are associated with directories.
n External nodes are associated with regular files.
n In Unix, root of the tree is called root directory.

3

COSC 2011 Section N
Winter 2001 03/13/2001

9

Trees: Terminology

COSC 2011 Section N
Winter 2001 03/13/2001

10

Trees: ADT (1)
n Tree ADT stores elements at positions

u Defined relative to neighboring positions.

n Positions in a tree are its nodes
u Neighboring positions satisfy the parent-child

relationships that define a valid tree.

n Position and Nodeare used interchangeably for trees!

n Methods

u A position object for a tree supports the method:

element()
Return the object at this position
Input: None, Output: Object

u Accessor methods

COSC 2011 Section N
Winter 2001 03/13/2001

11

Trees: ADT (2)

root()
Return the root of the tree.
Input: None, Output: Position

parent(v)
Return the parent of node v; An error occurs

if v is the root.
Input: Position, Output: Position

children(v)
Return the Iterator of the children of node v.
Input: Position, Output: Iterator of Position

n Query Methods

isInternal(v)
Test whether node v is internal.
Input: Position, Output: Boolean

COSC 2011 Section N
Winter 2001 03/13/2001

12

Trees: ADT (3)

isExternall(v)
Test whether node v is external.
Input: Position, Output: Boolean

isRoot(v)
Test whether node v is the root of the tree..
Input: Position, Output: Boolean

n Generic Methods
u Not necessarily related to a tree structure

size()
Return the number of nodes in the tree..
Input: None, Output: Integer

elements()
Return an iterator of all elements stored in

the nodes of the tree.
Input: None, Output: Iterator of Objects

4

COSC 2011 Section N
Winter 2001 03/13/2001

13

Trees: ADT (4)

positions()
Return the iterator of all nodes in the tree.
Input: None, Output: Iterator of positions

swapElements(v, w)
Swap the elements stored at nodes v and w.
Input: Two positions, Output: None

replaceElement(v, e)
Replace with e and return the element stored

at node v.
Input: Position and an object, Output: Object

COSC 2011 Section N
Winter 2001 03/13/2001

14

Trees: Java Interface (1)

public interface InspectablePositionalContainer extends
InspectableContainer {

// accessor methods
/** return the positions in the container */
public PositionIterator positions();

}

public interface PositionalContainer extends
InspectablePositionalContainer {

// update methods
/** swap the elements at two nodes */
public void swapElements(Position v, Position w);

/** replace with and return the element at a node */
public Object replaceElement(Position v, Object e);

}

COSC 2011 Section N
Winter 2001 03/13/2001

15

Trees: Java Interface (2)

public interface InspectableTree extends
InspectablePositionalContainer {

// accessor methods
/** return the root of the tree */
public Position root();

/** return the parent of a node */
public Position parent(Position v);
/** return the children of a node */
public PositionIterator children(Position v);

// query methods
/** test whether a node is internal */
public boolean isInternal (Position v);

/** test whether a node is external */
public boolean isExternal(Position v);

/** test whe her a node is the root of the tree */ public
boolean isRoot(Position v);

}

COSC 2011 Section N
Winter 2001 03/13/2001

16

Trees: Java Interface (3)

public interface Tree extends InspectableTree,
PositionalContainer {}

n Additional update methods may be added depending on
the application.
u Not included in the interface!
u Tree interface is simply the combination of two

other interfaces.

5

COSC 2011 Section N
Winter 2001 03/13/2001

17

Trees: Binary Trees (1)

n Binary Tree
u Ordered tree.
u Each node has a maximum of two children.

n Definitions:
u Proper Binary tree:

Each node has either zero or two children.Every
internal node has exactly two children.

u Left or Right Child
Each child of a node is labeled as either the left

or right child. Left child comes before the right
child.

u Left and Right Subtree
The subtree rooted at a left or right child of an

internal node v.

COSC 2011 Section N
Winter 2001 03/13/2001

18

Trees: Binary Trees (2)

n Recursive Definition:

COSC 2011 Section N
Winter 2001 03/13/2001

19

Trees: Binary Tree ADT

n Accessor Methods:

leftChildl(v)
Return left child of node v; Error ocurrs if v

is an external node.
Input: Position, Output: Position

rightChildl(v)
Return right child of node v; Error ocurrs if v

is an external node.
Input: Position, Output: Position

sibling(v)
Return sibling of node v; Error ocurrs if v is

the root.
Input: Position, Output: Position

n Specialized update methods are not defined here!
n May have additional error conditions if the trees are not

proper!

COSC 2011 Section N
Winter 2001 03/13/2001

20

Trees: Binary Tree Java Interface

public interface InspectableBinaryTree extends
InspectableTree {

// accessor methods
/** return the left child of a node */
public Position leftChild(Position v);

/** return the right child of a node */ public Position
rightChild(Position v);

/** return the sibling of a node */ public Position
sibling(Position v);}

public interface BinaryTree extends
InspectableBinaryTree, PositionalContainer {}

6

COSC 2011 Section N
Winter 2001 03/13/2001

21

Pseudo-Code (1)

n Description of an algorithm hat is more structured than
usual prose but less formal than a programming
language.

n Example: finding the maximum element of an array:

n More compact than Java code
n Easier to read

n High level description permits high level analysis of a
data structure or algorithm

COSC 2011 Section N
Winter 2001 03/13/2001

22

Pseudo-Code (2)

n What is Pseudo-Code?

u A mixture of natural language and high level
programming concepts that describe the main ideas
behind a generic implementation of a data structure
or algorithm

u Expressions: Use standard mathematical symbols
to describe numeric and boolean expressions.

« Use !! for assignment (“=“ in Java)

« Use = for equality relationships (“==“ in Java)

u Method Declarations:
« Algorithm(param1, param2 …)

u Programming Constructs:
« Decision Structures if … then … [else]
« While Loops while … do
« For Loops for … do
« Array IndexingA[I]

COSC 2011 Section N
Winter 2001 03/13/2001

23

Pseudo-Code (3)

n What is Pseudo-Code?

u Methods:
« Calls object.method(args)
« Return return value

n When writing Pseudo Code, Keep in Mind:

u Writing for a human reader, not a computer!
« Want high level ideas not low level

implementation details!
« Don’t forget important steps!

u Skill which is improved with practice!

COSC 2011 Section N
Winter 2001 03/13/2001

24

Array Based Implementations: Stack (1)
n Specify a maximum size N for the Stack, e.g. N = 1000

n Stack consists of an N element Array S and an integer
variable t, the index of the top element in the Stack.

u Array indices start with 0 so initialize t to –1.

n Pseudo-Code

7

COSC 2011 Section N
Winter 2001 03/13/2001

25

Array Based Implementations: Stack (2)

n Pseudo-Code (continued)

n Each of the above methods runs in O(1) time.
n Very simple and efficient

n Upper bound to the stack size may be:
n Too small
n May be too large and actually waste memory

n Note the exceptions!
COSC 2011 Section N

Winter 2001 03/13/2001
26

Array Based Implementations: Stack (3)

n Source Code

COSC 2011 Section N
Winter 2001 03/13/2001

27

Array Based Implementations: Stack (4)

n Source Code (continued)

COSC 2011 Section N
Winter 2001 03/13/2001

28

Array Based Implementations: Stack (5)

n Source Code (continued)

8

COSC 2011 Section N
Winter 2001 03/13/2001

29

Array Based Implementations: Stack (6)

n Casting with a Generic Stack

u Can store generic objects in the stack, each
belonging to an arbitrary class.

u Elements that are stored in it are viewed as
instances of the Java Object class!

u No trouble adding elements to the stack since every
class in Java inherits from Object.

u When removing an element from a Stack we get
back a reference of type Object no matter what
type of class the object may be.

u Must cast the object to the specific class.

public static Integer[] reverse(Integer [] a){
ArrayStack S = new ArrayStack(a.length);
Integer[] b = new Integer(a.length);
for(int i = 0; i < a.length; i++){

S.push(a[I]);
}
for(int i = 0; i < a.length; i++){

b[I] = (Integer) (S.pop());
}

COSC 2011 Section N
Winter 2001 03/13/2001

30

Array Based Implementations: Queue (1)

n Array Q to with a capacity N

n How do we keep track of the front and rear of the Q?

u Can use same approach as the Stack – let Q[0] be
the front of the queue and let the queue grow from
there.
« Not efficient! Need to move all the elements

forward one array cell after a dequeue
operation.

u To avoid moving the objects:
« Define two integer variables f and r with the

following properties:
f, index of the front element.
r, index of the rear element.

u Initially assign f = r = 0 to indicate queue is empty.

u When we remove an element from front of the
queue, increment f to index the next cell.

u When we add an element, increment r to index the
next available cell

u Allows for O(1) time enqueue and dequeue

COSC 2011 Section N
Winter 2001 03/13/2001

31

Array Based Implementations: Queue (2)

u Problem with this approach!
« What if we enqueue and dequeue a single

element N different times?
« Then f = r = N!
« If we tried to insert another element, we get an

ArrayIndexOutOfBoundsException!
« Still plenty of room in the array!

u Use a “Circular Array”
« f and r indices wrap around the end of the

queue.
« Array goes from Q[0] – Q[N-1] and then

immediately back to Q[0] again.

COSC 2011 Section N
Winter 2001 03/13/2001

32

Array Based Implementations: Queue (3)

u Each time we increment f or r, compute the
increment as:

f = (f + 1) mod N
r = (r + 1) mod N

u Now have O(1) time enqueue and dequeue

u What if we enqueue N objects without dequeueing
any of them?
« Then f = r, same condition when queue is

empty and cannot tell the difference between a
full and empty queue.

« Solution?
• Insists that Q can never hold more than N-

1 elements.

u Computing Size of the Queue:

(N – f + r) mod N

« Gives correct size both in normal configuration
(f <= r) and wrapped around configuration
(r < f)

9

COSC 2011 Section N
Winter 2001 03/13/2001

33

Array Based Implementations: Queue (4)

n Pseudo-Code:

Algorithmsize()
return (N – f + r) mod N

Algorithm isEmpty()
return (f = r)

Algorithm front()
if isEmpty then

throw a QueueEmptyException
return Q[f]

Algorithmdequeue()
if isEmpty then

throw a QueueEmptyException
temp ←← Q[f]
Q[f] ←← null
f ← (f + 1) mod N
return temp

COSC 2011 Section N
Winter 2001 03/13/2001

34

Array Based Implementations: Queue (5)

n Pseudo-Code (continued):

Algorithm enqueue(o)
if size() = N - 1 then

throw a QueueFullException
Q[r] ←← o
r ← (r + 1) mod N

n Disadvantages of Array based Implementations:
u Set the capacity of the array
u In a real application we may need more or less

capacity than this.

n If we have a good estimate of the number of elements
in the stack or array then array based implementations
are simple and very efficient!

COSC 2011 Section N
Winter 2001 03/13/2001

35

Stacks and Queue with Deques

Stack Methods Dequeue Method

size() size()
isEmpty() isEmpty()
top() last()
push(e) insertLast(e)
pop() removeLast()

Queue Method Dequeue Method

size() size()
isEmpty() isEmpty()
front() first()
enqueue() insertLast()
dequeue() removeFirst()

COSC 2011 Section N
Winter 2001 03/13/2001

36

Bubble Sort Algorithm

n Bubble-Sort Algorithm

u Sorts a sequence of elements in a sequence in non-
decreasing order.

u Performs a series of passes over the sequence

u In each pass, elements are scanned in increasing
rank, from rank 0 to the end of the sequence.

u At each position in each pass, an element is
compared with its neighbour

u If in wrong order, elements are swapped

u Total of n passes are performed

u In first pass, when largest element is swapped, it
will be swapped until it reaches the end of the
sequence.

u In the second pass, the seconds largest element is
found etc.

u Running Time:
« O(n^2)

