COSC 2011
SectionN
Instructor: Bill Kapralos

Tuesday, March 13 2001
Overview
mContainers

& Inspectable Containers

mAbstract Data Types
& Trees, Binary Trees

mPseudo-Code

m Array Based Implementations
* Stack
¢ Queue

mLoop Invariants (Time Permitting)

Containers (1)

m Definition

¢ A data structure that stores an organizes a
collection of objects caled the elements of the
container

& Provides access to them through the methods of the
abstract data type.

& Examplesinclude: stacks, queues, dequeues,
vectors, lists, sequences etc.

m Four main Categories for Methods of a Container

& Query Methods: Return info. on the container or
specific eements.

& Accessor Methods: Return elements or positions
of the container

& Update Methods: Changethe container by adding
or removing elements or altering the relation
between elements.

& Constructor Methods: Generate an instance of the
container.

COSC 2011 Section N
Winter 2001 03/13/2001

Containers (2)
m Inspectable Containers

& Containers that do not provide update methods

& Support only read-only access and cannot be
modified

& Protect their elements from erroneous or malicious
update attempts by other objects

& Cannot be used when their elements are subject to
updates during the life of their container.

& Using inheritance we can get protection of inspect
able containers while still getting flexibility of
update methods

COSC 2011 Section N
Winter 2001 03/13/2001

Containers (3)

& InspectableVector that contains only the query
methods and the accessor method

& Redefine aVector asan ADT that ingpects the
inspectableVector ADT and adds the update
methods

Inspectable Vector
size()

iSEmpty()
elemAtRank()

Vector
replaceAtRank()
insertAtRank()
removeAtRank()

= Revised vector is equivaent to the origina one.

= But now we can reference an instance of the vector
with avariable of type InspectableVector thus alowing
only the query and accessor methods

= Can alsoredtructure the List and Sequence ADTshy
introducing inspect able versions of them.

COSC 2011 Section N
Winter 2001 03/13/2001

Trees: Terminology and Basic
Properties

m TreeAbstract Data Type
& Stores elements hierarchically

¢ A set of nodes storing elementsin aparent-child
relationship.

& Top elementr iscalled theroot.
& Each nodev of tree T except for r hasaparent node u.
Treecannot beempty!

* Will always have at least the r oot node

m Définitions
& Child
If node uisthe parent of nodev, thenv isachild of u.

& Siblings
Two nodes which have the same parent.
& External Node:

A node which has no children.
« Alsoknownasaleaf.

+ Internal Node:
A nodewhich has at |east one child.

COSC 2011 Section N
Winter 2001 03/13/2001

Trees: Terminology and Basic
Properties (continued)

= Definitions (continued)

& Ancestor:

Either the node itself or an ancestor of the parent
of the node.

& Descendant:

A node v is adescendant of anode u if uisan
ancestor of v

& Descendant:
A nodev isadescendant of anode u if uisan ancestor
of v
¢ Subtree:

Thesubtreeof tree T rooted at anodev isthetree
consisting of all descendantsof vinT (including v
itself).

¢ Ordered Tree

A linear ordering defined for the children of each node.
We can identify the children asbeing thefirst,
second, third etc.

& Notethe Recursive Definitionsfor Ancestor,
Descendant and Subtree!

COSC 2011 Section N
Winter 2001 03/13/2001

Trees: Examples

- organization structure of a corporation

(quchasing‘) (Mamlfacturinp_“)

ming [I support cocle

[nxms] lhnmmrk.xl Ipmyaml

COSC 2011 Section N

Winter 2001 03/13/2001 7

Trees: Another Example

+ Unix or DOSMiIndows file system

Fuso ifcour e

fracs

By aw aalnign makal

m Internal nodes are associated with directories.
m External nodes are associated with regular files.
= [n Unix, root of the tree is caled root directory.

COSC 2011 Section N s
Winter 2001 03/13/2001

Trees: Terminology

* A iz the roof noce.

» 1 15 the parent of [and E.

= i is the sibling of B

» 2 and E are the children of B

v [} E, F G, §ae external wodes, or feaves
* A, B, C, H are intevnal nodes

+ The depih (level) of E is 2

+ The height of the reeis 3

* The degree of node B is 2

Property: (# edges) = (Fmodeg) — |
COSC 2011 Section N

Winter 2001 03/13/2001 9

Trees: ADT (1)

m Tree ADT stores elements at positions
& Defined relative to neighboring positions.

m Positionsin atree are its nodes

& Neighboring positions satisfy the parent-child

relationships that define a valid tree.

m Position and Nodeare used interchangesbly for trees!
m Methods

& A position object for atree supports the method:

element()
Return the object at this position

Input: None, Output: Object

& Accessor methods

COSC 2011 Section N 10
Winter 2001 03/13/2001

Trees: ADT (2)

root()
Return the root of the tree.
Input: None, Output: Position

parent(v)
Return the parent of node v; An error occurs
if vistheroot.

Input: Position, Output: Position

children(v)
Return the Iterator of the children of node v.
Input: Position, Output: Iterator of Position

m Query Methods
islnternal(v)

Test whether node v isinternal.
Input: Position, Output: Boolean

COSC 2011 Section N 11
Winter 2001 03/13/2001

Trees: ADT (3)

isExternall(v)
Test whether node v is external.
Input: Position, Output: Boolean

isRoot(v)
Test whether node v is the root of the tree..
Input: Position, Output: Boolean

m Generic Methods
& Not necessarily related to atree structure

size()
Return the number of nodes in the tree..
Input: None, Output: Integer

elements()

Return an iterator of all elements stored in
the nodes of the tree.

Input: None, Output: Iterator of Objects

COSC 2011 Section N 12
Winter 2001 03/13/2001

Trees: ADT (4)

positions()
Return the iterator of al nodes in the tree.
Input: None, Output: Iterator of positions

swapElements(v, w)
Swap the elements stored at nodes v and w.
Input: Two positions, Output: None

replaceElement(v, €)
Replace with e and return the element stored
a nodev.

Input: Position and an object, Output: Object

COSC 2011 Section N 13
Winter 2001 03/13/2001

Trees: Java Interface (1)

public interface InspectablePositional Container extends
InspectableContainer {

/I accessor methods
[** return the positions in the container */
public Positionlterator positions();

publicinterface Positiona Container extends
I nspectablePositional Container {

/I update methods
/** swap the elements at two nodes */
public void swapElements(Position v, Position w);

/** replace with and return the ement a a node */
public Object replaceElement(Position v, Object €);

COSC 2011 Section N 14
Winter 2001 03/13/2001

Trees: Java Interface (2)

publicinterface | nspectableTree extends
Inspectabl ePositional Container {

/1 accessor methods
/** return theroot of thetree*/
public Position root();

[** return the parent of anode */

public Position parent(Position v);

/** return the children of anode*/

public Postionlterator children(Positionv);

/I query methods
/** test whether anodeisinternal */
publicbooleanisinternal (Position v);

/** test whether anodeisexternal */
public boolean isExternal(Position v);

/** test whe her anodeistheroot of thetree*/ public
booleanisRoot(Position v);

COSC 2011 Section N 15
Winter 2001 03/13/2001

Trees: Java Interface (3)

public interface Tree extends InspectableTree,
PositionalContainer {}

m Additiona update methods may be added depending on
the application.
¢ Not included in the interface!

& Tree interface is smply the combination of two
other interfaces.

COSC 2011 Section N 16
Winter 2001 03/13/2001

Trees: Binary Trees (1)

m Binary Tree
& Ordered tree.
& Each node has a maximum of two children.

m Definitions:
& Proper Binary tree:

Each node has either zero or two children.Every
internad node has exactly two children.

& Left or Right Child

Each child of a node is labeled as either the left
or right child. Left child comes before the right
child.

& Left and Right Subtree
The subtree rooted &t a left or right child of an
internal node v.

COSC 2011 Section N

Winter 2001 03/13/2001 e

Trees: Binary Trees (2)

m Recursive Definition:

* A hinary free is cither
= an exbernal node (leal), or
- an intermal node (the rearh 2ud two bivary trees
{:':.ﬁ' s biree and ripht smbiree i)

COSC 2011 Section N

Trees: Binary Tree ADT

m Accessor Methods:

leftChildi(v)

Return left child of node v; Error ocurrsif v
is an externa node.

Input: Position, Output: Position

rightChildl(v)
Return right child of node v; Error ocurrsif v
is an externa node.
Input: Position, Output: Position

sibling(v)
Return sibling of node v; Error ocurrsif v is
the root.
Input: Position, Output: Position

m Specidized update methods are not defined here!
m May have additiond error conditions if the trees are not
proper!

COSC 2011 Section N

Winter 2001 03/13/2001 19

Winter 2001 03/13/2001 18
Trees: Binary Tree Java Interface
public interface InspectableBinary Tree extends
InspectableTree {
/I accessor methods
/** return the left child of anode*/
public Position leftChild (Position v);
[** return the right child of anode*/ public Position
rightChild(Position v);
[** return the sibling of anode */ public Position
sibling(Position v);}
publicinterface BinaryTree extends
InspectableBinaryTree, Positiona Container
COSC 2011 Section N 20

Winter 2001 03/13/2001

Pseudo-Code (1)

m Description of an dgorithm hat is more structured than
usual prose but less formal than a programming
language.

m Example: finding the maximum element of an array:

Algorithm arrayMax(A, n):

Input: An array A storing n integers.
Cuipur: The maximum element in A.

currentMax « A[0]

fori«— ltorn—ldo
if eurrentMax < A[{] then

currentMax « Alf]
retarn currentMax

= More compact than Java code
= Easier to read

= High level description permits high level analysis of a
data structure or agorithm

COSC 2011 Section N

Winter 2001 03/13/2001 2L

Pseudo-Code (2)
m What isPseudo-Code?

& A mixture of natural language and high level
programming concepts that describe the main ideas
behind a generic implementation of a data structure
or dgorithm

& Expressions; Use standard mathematical symbols
to describe numeric and boolean expressions.
* Use + for assignment (‘=" in Java)
* Use = for equality relationships (‘==" in Java)

& Method Declarations:
* Algorithm(paraml, param2 ...)

& Programming Constructs:
* Decision Structures if ... then ... [dsd]
* While Loops while... do
* For Loops for ... do
* Array IndexingA[l]

COSC 2011 Section N

Winter 2001 03/13/2001 22

Pseudo-Code (3)

m What isPseudo-Code?

& Methods:
* Calls object.method(args)
* Return return value

m When writing Pseudo Code, Keep in Mind:

& Writing for a human reader, not a computer!

* Want high level ideas not low level
implementation details!

* Don't forget important steps!

& Skill which isimproved with practice!

COSC 2011 Section N

Winter 2001 03/13/2001 23

Array Based Implementations: Stack (1)
m Specify amaximum size N for the Stack, eg. N = 1000

m Stack consists of an N element Array S and an integer
varigble t, the index of the top element in the Stack.

& Array indices start with 0 so initidize t to —1.

o 1 3 T =1

Algorithm size():
return f +1

Algorithm isEmpty():
retarn {f < 0)

Algorithm top():
if isEmpty() then
throw a StackEmptyException
return S[7]

COSC 2011 Section N

Winter 2001 03/13/2001 24

Array Based Implementations: Stack (2)

Algorithm pushis)

iF size() = A then
thnaw a Siucklial

Fa=r+ |

S e

Algorithm popd)
if isEmpop() then
throw a Soic ity Fxcepin
e—i[]
Sl s—null
fe—r-1
return ¢

Each of the above methods runsin O(1) time.
Very smple and efficient

Upper bound to the stack size may be:

Too small

May be too large and actually waste memory
Note the exceptions!

COSC 2011 Section N

Winter 2001 03/13/2001 25

Array Based Implementations: Stack (3)

m Source Code

public dass AmayFlack implemanis S5lack |
4 Iplanartat 1on o L SCack INTArfacs

public static final int CAPAGITY = 1024 /7 coraai

sapagikty of Ehe

Jprlvaie int capacihy ¢ o

prlvate Ohect B[] /7 &t

jrlwaie int bop = —1

public AmayStack 1 { /¢
eI APACITY); rzth dufag

public AraySteddint capl { // Inicialize cho

capacity = cap;
8 = paw Chiacljcapacily]

COSC 2011 Section N

Winter 2001 03/13/2001 26

Array Based Implementations: Stack (4)

m Source Code (continued)

public (nf size) [F/Rsturn ERs Enrcent sEack =iEm
At iap + 1)
§

public booiEan isEmphe) { 7/ metuis Live LEE

raburm Jiop = 09;

4

puibiie wold push{Cbisot obj)
hews Sl Evceplion] </ rus o saw

if fsi i) == capaciy] |
Hirow miva SRack FUAIExeapionGlack owariow)
S[44inp] = oo
4

publie Cbject fop |

Bhrows S oty ERcer
it s Ernpiy) |
o e StackErg
ampRe);

rofen S{loa];

COSC 2011 Section N

Winter 2001 03/13/2001 21

Array Based Implementations: Stack (5)

m Source Code (continued)

public Dopscd pop) /¢ Pop off che scack alamanc
Throaas Simck W o |
Dbject wlem
it fisEmphyt) |
throw new SiieckEmply Exception|™Stack is Emply);

elem = S[iop]:

Siop—] =il // Deraference Sican] and

fdecraRpnt Lop
ralum @élam;

}

COSC 2011 Section N

Winter 2001 03/13/2001 28

Array Based Implementations: Stack (6)

m Casting with a Generic Stack

& Can store generic objects in the stack, each
belonging to an arbitrary class.

& Elements that are stored in it are viewed as
instances of the Java Object class!

No trouble adding elements to the stack since every
class in Java inherits from Object.

4 When removing an element from a Stack we get
back a reference of type Object no matter what
type of class the object may be.

& Must cast the object to the specific class.

public static Integer[] reverse(Integer [] a)}{
ArrayStack S= new ArrayStack(alength);
Integer[] b = new Integer(alength);
for(inti = 0;i <alength; i++){

S.push(all]);

for(inti = 0;i <alength; i++){
b[1] = (Integer) (Spop();
}

COSC 2011 Section N 29
Winter 2001 03/13/2001

Array Based Implementations: Queue (1)

m Array Q to with a capacity N
m How do we keep track of the front and rear of the Q?

& Can use same gpproach as the Stack —let Q[0] be
the front of the queue and let the queue grow from
there.

* Not efficient! Need to move al the elements
forward one array cell after a dequeue
operation.

& To avoid moving the objects:
* Define two integer variables f and r withthe
following properties:

f, index of the front element.
r, index of the rear dement.

Initialy assign f =r = 0 to indicate queue is empty.

& When we remove an eement from front of the
queue, increment f to index the next cell.

4 When we add an eement, increment r to index the
next available cell

 Allows for O(1) time enqueue and dequeue
COSC 2011 Section N 30
Winter 2001 03/13/2001

Array Based Implementations: Queue (2)

& Problem with this approach!

* What if we enqueue and dequeue a single
element N different times?

* Thenf=r=N!

* If we tried to insert another element, we get an
ArraylndexOutOfBoundsException!

* Still plenty of room in the array!

& Usea “Circular Array”
* f and r indices wrap around the end of the
queue.
* Array goes from Q[0] — Q[N-1] and then
immediately back to Q[0] again.

el 111 ISR, - S 1]
12 f

]
a rool

= “wrapgped aroond” conf garation

cpueree [11N~ S10 1 [SEeps
a1z r Fow

COSC 2011 Section N 31
Winter 2001 03/13/2001

Array Based Implementations: Queue (3)

& Each time we increment f or r, compute the
increment as:

f=(f+21) modN
r=(r+1) mod N

& Now have O(1) time enqueue and dequeue

& What if we enqueue N objects without dequeueing
any of them?
* Then f = r, same condition when queue is
empty and cannot tell the difference between a
full and empty queue.

* Solution?

« Inssts that Q can never hold more than N-
1 elements.

& Computing Size of the Queue:
(N—=f+r)modN
* Gives correct size both in normal configuration

(f <=r) and wrapped around configuration
(r<f)

COSC 2011 Section N 32
Winter 2001 03/13/2001

Array Based Implementations: Queue (4)
m Pseudo-Code:

Algorithmsize()
return (N —f +r) mod N

Algorithm isEmpty()
return (f=r)

Algorithm front()
if isEmpty then
throw a QueueEmptyException
return Q[f]

Algorithm dequeue()
if isEmpty then
throw a QueueEmptyException
temp— Q[f]
Q[f] = null
f- (f+1)modN
return temp

COSC 2011 Section N

Winter 2001 03/13/2001 33

Array Based Implementations: Queue (5)

m Pseudo-Code (continued):

Algorithm enqueue(0)
if sze() =N -1 then
throw a QueueFullException
Qr—~ o
r= (r+1)modN

m Disadvantages of Array based Implementations:
& Set the capacity of the array

& In ared application we may need more or less
capacity than this.

= |f we have agood estimate of the number of eements
in the stack or array then array based implementations
are smple and very efficient!

COSC 2011 Section N

Winter 2001 03/13/2001 34

Stacks and Queue with Deques

Stack Methods Dequeue Method
size() size()

isEmpty() isEmpty()

top() last()

push(e) insertLast(e)
pop() removel ast()
Queue Method Dequeue Method
sze() sze()

isEmpty() isEmpty()

front() first()

enqueue() insertLast()
dequeue() removeFirst()

COSC 2011 Section N
Winter 2001 03/13/2001

35

Bubble Sort Algorithm
m BubbleSort Algorithm
& Sorts a sequence of elementsin a sequence in non-
decreasing order.
& Performs a series of passes over the sequence

In each pass, eements are scanned in increasing
rank, from rank O to the end of the sequence.

& At each position in each pass, an element is
compared with its neighbour

« If in wrong order, elements are swapped
& Tota of n passes are performed

In first pass, when largest element is swapped, it
will be swapped until it reaches the end of the
sequence.

In the second pass the seconds largest element is
found etc.

& Running Time:
* O(M2)

COSC 2011 Section N

Winter 2001 03/13/2001 36

