
1

2001-03-15 1

COSC 2011 Section N
Tuesday, March 13 2001

Overview

nAssignment 1 Notes

nArray Based Implementations
u“Wrap-around” Queue, Vector,
Sequence

nLinked Lists
u“Singly” & “Doubly” Linked

uStack, Queue, Dequeue, “List”

2001-03-15 2COSC 2011
Section N

Sequence: Array (1)

n Represent a position p with a
new object:
uEach array element stores

one object.
uEach object holds an

element and an index i.

2001-03-15 3COSC 2011
Section N

Array Based
Implementations: Queue

uEach time we increment f or r,
compute the increment as:

f = (f + 1) mod N

r = (r + 1) mod N

uNow have O(1) time enqueue
and dequeue

uInsists that Q can never hold
more than N-1 elements.

uComputing Size of the Queue:

(N – f + r) mod N

2001-03-15 4COSC 2011
Section N

Assignment 1 Notes: (1)

n Class Invariant:

uHow the variables represent
the data structure

uAssertion which should
hold after initialization

u Should be preserved by the
operations on the data
structure.

uE.g. Stack has top variable:
«Initialized to –1.
«S[top] always refers to
the top element.

2

2001-03-15 5COSC 2011
Section N

Assignment 1 Notes: (2)

n Assertions:
uA logical condition that is

assumed to hold at some
point of program execution.

uPrecondition:
«Some condition before
the start of execution.

«May not have any!

uPostconditions:
«If precondition is true and
code is executed, these
conditions will now hold:

2001-03-15 6COSC 2011
Section N

Assignment 1 Notes: (3)

n Notation:

{P} → S → {Q}

If precondition P is true
before execution of
statements S, then the
postcondition Q will be true
after execution.

2001-03-15 7COSC 2011
Section N

Sequence: Array (2)

n When inserting:

uNeed to shift position
objects to make room for
new position

n When deleting:

uShift position objects to fill
hole created by removal of
old position.

n O(N) Time when inserting or
deleting!

2001-03-15 8COSC 2011
Section N

Sequence: Comparison (1)

n Comparison of Sequence
Implementations:

uArray vs. Linked List

3

2001-03-15 9COSC 2011
Section N

Sequence: Comparison (2)

n Array imp. is superior for ranked
based operations

uatRank, rankOf, elemAtRank

uEqual to linked list with other
access methods.

n Linked list is superior for position
based operations

uinsertAfter, insertBefore,
remove.

n Linked list is superior for space
usage!

uO(n) vs. O(N)

2001-03-15 10COSC 2011
Section N

Vector: Array (1)

n Obvious Choice:

uUse array A where A[i]
stores reference to element
with rank i.

uChoose array size N large!

uMaintain number of
elements n < N in array.

uNeed to shift elements in
the array “up or down” to
keep array cells contiguous.

2001-03-15 11COSC 2011
Section N

Vector: Array (2)
n Method Implementations:

2001-03-15 12COSC 2011
Section N

Vector: Array (3)

uHow about elemAtRank(r)?

uWhen inserting or deleting:

«Shift elements up or down
to keep array cells
contiguous!

«Needed to maintain rule
of always storing an
element of rank I at index
i in A.

4

2001-03-15 13COSC 2011
Section N

Vector: Array (4)

n Running Time of Several
Methods:

n insertAtRank(r, e): Worst case
running time when r = 0.

n removeAtRank(r, e): Worst
case running time when r = 0.

2001-03-15 14COSC 2011
Section N

Vector:Extendable Array (1)

n Regular Array Implementation
Assumes Fixed Capacity!

uDefeats the purpose of
vector.

uWaste of space or lack of
space!

n Easy, Why not Grow the
Array!.

uArray capacity in Java is
fixed – Can’t grow Array.

2001-03-15 15COSC 2011
Section N

Vector:Extendable Array (2)

n When Overflow occurs:

1. Allocate new array of size 2N.

2. Copy A[i] to B[i], for all between
0 and N - 1

3. Let A = B. Now B supports the
Vector.

u This is an Extandable Array.

« Extend the original array
to make room for more
elements.

« Can grow by any size, not
necessarily N, 2N etc.

2001-03-15 16COSC 2011
Section N

Vector:Extendable Array (3)

n Increasing the Array Size:

u May seem slow since.

u After array size is
increased by N, space for
an additional N elements.

u Running time on a series
of operations on an
initially empty vector is
actually quite efficient!

5

2001-03-15 17COSC 2011
Section N

Singly Linked Lists (1)

n Definition:

u Collection of nodes
forming a linear ordering.

u Ordering is determined as
“Follow the Leader”

u Each node stores a
reference to an element
and a reference, called
next, to another node.

2001-03-15 18COSC 2011
Section N

Singly Linked Lists (2)

u null object denoted by ∅
and is pointed to by last
node indicating end of
list.

u “head” reference is a
single instance variable.

2001-03-15 19COSC 2011
Section N

Singly Linked Lists (3)

n next Reference:

u Link or pointer to another
node.

n Link Hopping:

u Moving from node to
node, using next pointer.

n Head: First node in list.

n Tail: Last node in list and
has a null next pointer.

2001-03-15 20COSC 2011
Section N

Singly Linked Lists (4)

n As an array, keeps the
elements in a certain linear
order

n No fixed size

u Uses space proportional
to the number of its
elements.

u Space usage: O(n)

n Insert/Delete element at the
head of the List in O(1)
time.

6

2001-03-15 21COSC 2011
Section N

Singly Linked Lists (5)

n Inserting at head of list:
u Create a new node.
u Set its next pointer to refer to

same object as current head
of list.

u Set the head of list to point to
new node.

n Inserting at tail of list:
u Create a new node.
u Set its next pointer to null.
u Set next pointer of tail to

point to new node.
u Assign tail reference to new

node.
2001-03-15 22COSC 2011

Section N

Singly Linked Lists (6)

n Deleting a Node:

u Can’t delete the tail node
in O(1) time.

« Need to access node
before the tail!

« Only way to do this, is
to start from head of
list and traverse entire
list.

2001-03-15 23COSC 2011
Section N

Linked List: Stack (1)

n Implementation:

u Top of stack can be head
or tail of list

« Since we can insert &
delete at the head of
list, make head the top .

u Space Requirement: O(n)

u No space limitations
(bounded only by
memory).

2001-03-15 24COSC 2011
Section N

Linked List: Queue (1)

n Implementation:

u Front of queue where we
delete only is head of list.

u Rear of queue where we
insert elements is the tail.

u Efficient! O(1) time.

u Why not insert at the at
the head and remove at
the tail?

u Need references to head
and tail of the list.

7

2001-03-15 25COSC 2011
Section N

Linked List: Queue (2)

n Inserting at tail of list:

2001-03-15 26COSC 2011
Section N

Linked List: Queue (3)

n Removing at head of list:

2001-03-15 27COSC 2011
Section N

Doubly Linked Lists (1)

n Allows for a great variety of
operations:

u Insertion & deletion at
both ends of list in O(1).

n Node stores 2 references:

u next link – points to the
next node in the list

u prev link – points to the
previous node in the list.

2001-03-15 28COSC 2011
Section N

Doubly Linked Lists (2)

n Add special nodes at both
ends of list which do not
store any element:

u header node just before
the head of the list.

« Valid next reference.
« null prev reference.

u trailer node just after the
last node of the list.

« Valid prev reference.
« null next reference.

8

2001-03-15 29COSC 2011
Section N

Doubly Linked Lists (3)

n Example:

2001-03-15 30COSC 2011
Section N

Doubly Linked Lists (4)

n Inserting & removing at
either end in O(1) time:

u prev pointer eliminates
need to traverse list to
find node just before tail.

n Inserting & deleting
anywhere else in list:

u Simply a matter of
changing the pointers!

2001-03-15 31COSC 2011
Section N

Doubly Linked Lists (4)

n List ADT with doubly
linked list:

u Make nodes implement
position interface

« define method
element() which returns
element stored at node.

u Nodes act as positions.
« Viewed internally by

list as nodes but on the
outside as positions.

2001-03-15 32COSC 2011
Section N

Doubly Linked Lists (5)

n In the internal node view:

u Each node has instance
variables prev and next

« Refer to predecessor and
successor nodes
respectively.

u Given position p we cast it to
a node.

« Once we have node, can
implement for example,
before(p) by returning the
prev reference.

9

2001-03-15 33COSC 2011
Section N

Doubly Linked Lists (6)

n Supports object oriented
approach additional time &
space overhead:

u Hides implementation
details from user.

u Aids in code reuse since
user doesn’t know that the
position objects are
actually treated as nodes!

u See text book for pseudo
code and Java Code!

2001-03-15 34COSC 2011
Section N

Doubly Linked Lists (7)

n Inserting element into list:

2001-03-15 35COSC 2011
Section N

Doubly Linked Lists (8)

n Removing element from list:

