COSC 2011 Section N

Tuesday, March 13 2001

Overview

sAssignment 1 Notes

sArray Based Implementations
+“Wrap-around” Queue, Vector,

Sequence

sLinked Lists
+“Singly” & “Doubly” Linked
o Stack, Queue, Dequeue, “List”

2001-03-15

Sequence: Array (1)
» Represent a position p with a
new object:

eEach array element stores
one object.

+Each object holds an
element and an index i.

G @ G

0
\ /
RN Wi |

L] 1 T 3 K-l

o

2001-03-15 COSC 2011
Section N

Array Based
Implementations: Queue

¢ Each time we increment f or r,
compute the increment as:

f=(f+1) modN
r=(r+1) modN

+Now have O(1) time enqueue
and dequeue

e Insists that Q can never hold
more than N-1 elements.

+ Computing Size of the Queue:

(N—f+r)modN

2001-03-15 COSC 2011
Section N

Assignment 1 Notes: (1)

a Class Invariant:

+How the variables represent
the data structure

e Assertion which should
hold after initialization

+ Should be preserved by the
operations on the data
structure.

+E.g. Stack has top variable:

~Initialized to —1.
xJtop] always refersto
the top element.

2001-03-15 COSC 2011
Section N

Assignment 1 Notes: (2)

» Assertions:
oA logica condition that is
assumed to hold at some
point of program execution.
«Precondition:

*Some condition before
the start of execution.

xMay not have any!

o Postconditions;

=|f precondition is true and
code is executed, these
conditions will now hold:

2001-03-15 COSC 2011
Section N

Assignment 1 Notes: (3)
= Notation:
{P ® S® {Q}

If precondition Pistrue
before execution of
statements S, then the
postcondition Q will be true
after execution.

2001-03-15 COSC 2011
Section N

Sequence: Array (2)
= When inserting:

+Need to shift position
objects to make room for
new position

= When deleting:

+ Shift position objects to fill
hole created by removal of
old position.

= O(N) Time when inserting or
deleting!

2001-03-15 COSC 2011
Section N

Sequence: Comparison (1)

» Comparison of Sequence
I mplementations:

eArray vs. Linked List

-

Operations | Array | List
size, 1sSEmpty oy | o1
atRank, rankOf, elemAtRank | o | Om)
first, last o) | o)
before, after o) | o)
-n:placeEicmcm, swapElements | o) 1 0(1]
replace AtRank o | On)
insertAtRank, remove AtRank o(n) | O(n)
insertFirst, insertlast | oy | o0l
insertAfter, insertBefore ! Oin) | O(1)
emaove j_O(n) o(1)
2001-08-15 COSC 2011 8

Section N

Sequence: Comparison (2)

= Array imp. is superior for ranked
based operations

¢ atRank, rankOf, elemAtRank

¢ Equal to linked list with other
access methods.

m Linked list is superior for position
based operations

einsertAfter, insertBefore,
remove.
m Linked list is superior for space
usage!
+0O(n) vs. O(N)

2001-03-15 COSC 2011 9
Section N

Vector: Array (1)

= Obvious Choice:

eUse array A where A[i]
stores reference to element
with rank i.

+Choose array size N large!

+Maintain number of
elementsn < N in array.

+Need to shift elementsin
the array “up or down” to
keep array cells contiguous.

2001-03-15 COSC 2011 10
Section N

Vector: Array (2)
= Method Implementations:

Algorithm setAtlankine)

Bri=r-La-2, rdo
Sl 1] - gli]
fel+—e
- n+
[v w WA
sEbErrrerrer el (11
ooz i a1 Wl

Algorithn nmuosc AL ank(s):
— 81

fori=Fr+l,...0-24d8
A1) - S+ 1]
=Rl
meturm
T 1‘| *
5
« O s n-1 =1

2001-03-15 COSC 2011 11
Section N

Vector: Array (3)
+How about elemAtRank(r)?

+When inserting or deleting:

* Shift elements up or down
to keep array cells
contiguous!

»Needed to maintain rule
of always storing an
element of rank | at index
i inA.

2001-03-15 COSC 2011 12
Section N

Vector: Array (4)
= Running Time of Several

Methods:

Method Time
iz i}
SEmpy [iy
u||.'|||.|'"|rF:4||F [iy
replace :I'J.rE.m'If [ﬂ-. L :-
s ALk Hn)
mmoveArHank [“onm

m insertAtRank(r, €): Worst case
running time whenr = 0.

= removeAtRank(r, e): Worst
case running timewhen r = 0.

2001-03-15 COSC 2011 13
Section N

Vector:Extendable Array (1)

= Regular Array Implementation
Assumes Fixed Capacity!

+Defeats the purpose of
Vector.

+Waste of space or lack of
space!

= Easy, Why not Grow the
Array!.

eArray capacity in Javais
fixed —Can’t grow Array.

2001-03-15 COSC 2011 14
Section N

Vector:Extendable Array (2)

= When Overflow occurs:

1. Allocate new array of size 2N.

2. Copy A[i] to B[], for all between
OandN -1

3. Let A =B. Now B supportsthe
Vector.

¢ Thisisan Extandable Array.

*= Extend the original array
to make room for more
elements.

» Can grow by any size, not
necessarily N, 2N etc.

2001-03-15 COSC 2011 15
Section N

Vector:Extendable Array (3)

= Increasing the Array Size:
¢ May seem slow since.

o After aray sizeis
increased by N, space for
an additional N elements.

+ Running time on a series
of operations on an
initially empty vector is
actually quite efficient!

2001-03-15 COSC 2011 16
Section N

Singly Linked Lists (1)

s Définition:

+ Collection of nodes
forming alinear ordering.

¢ Ordering isdetermined as
“Follow the Leader”

¢ Each node storesa
reference to an element
and areference, called
next, to another node.

2001-03-15 COSC 2011 17
Section N

Singly Linked Lists (2)

E-irm.- :] (:i.-ru:l (:x-’.—mJ Ik :I

+ null object denoted by A
and is pointed to by last
node indicating end of
list.

¢ “head’ referenceisa
single instance variable.

2001-03-15 COSC 2011 18
Section N

Singly Linked Lists (3)

next Reference;

+ Link or pointer to another
node.
Link Hopping:

+ Moving from node to
node, using next pointer.

Head: First node in list.

Tail: Last nodein list and
has a null next pointer.

2001-03-15 COSC 2011 19
Section N

Singly Linked Lists (4)

= Asan aray, kegpsthe
elementsin acertain linear
order

s Nofixed size

+ Uses space proportional
to the number of its
elements.

+ Space usage: O(n)

s Insert/Delete element at the
head of the List in O(1)
time.

2001-03-15 COSC 2011 20
Section N

Singly Linked Lists (5)

m Inserting at head of list:
¢ Create a new node.

¢ Setits next pointer to refer to
same object as current head
of list.

¢ Set the head of list to point to
new node.

m Inserting at tail of list:
¢ Create anew node.
¢ Setitsnext pointer to null.

¢ Set next pointer of tail to
point to new node.

¢ Assign tail reference to new
node.

2001-03-15 COSC 2011 21
Section N

Singly Linked Lists (6)

= Deleting aNode:

¢ Can't delete the tail node
in O(1) time.

*» Need to access node
before the tail!

x Only way to do this, is
to start from head of
list and traverse entire
list.

2001-03-15 COSC 2011 22
Section N

Linked List: Stack (1)

= |mplementation:

& Top of stack can be head
or tail of list

* Sincewe can insert &
delete at the head of
list, make head the top .

& Space Requirement: O(n)

o No space limitations
(bounded only by
memory).

2001-03-15 COSC 2011 23
Section N

Linked List: Queue (1)

= Implementation:

+ Front of queue where we
delete only is head of list.

+ Rear of queue where we
insert elements is the tail.

o Efficient! O(1) time.

o Why not insert at the at
the head and remove at
the tail?

¢ Need references to head
and tal of thelist.

2001-03-15 COSC 2011 24
Section N

Linked List: Queue (2)
m Inserting at tail of list:

oy

& SRR O T 11ide

}?E_a. g

oo

= phgin thand mwe e 1w | redfserroe

[15 g IEWE g W

= hini bl meimving o The 17T

2001-03-15 COSC 2011
Section N

25

Linked List: Queue (3)
» Removing at head of list:

ok (]

ENE g EHE o KW C o KU ™
D) G =) G

= alwince hcad refercnce

E\" . @

2001-03-15 COSC 2011 26
Section N

Doubly Linked Lists (1)

= Allowsfor agreat variety of
operations:

¢ Insertion & deletion at
both ends of list in O(1).
= Node stores 2 references:
+ next link — pointsto the
next node in the list

+ prevlink — pointsto the
previous node in the list.

2001-03-15 COSC 2011
Section N

27

Doubly Linked Lists (2)

» Add specia nodes at both
ends of list which do not
store any element:

+ header node just before
the head of the list.
x Valid next reference.
x null prev reference.
+ trailer node just after the
last node of the list.
x Valid prev reference.
x null next reference.

2001-03-15 COSC 2011 28
Section N

Doubly Linked Lists (3)

» Example

header traiier

(Br:umnu) (Nw Yerk) (P\c—-ﬂu:-:e)

2001-03-15 COSC 2011 29
Section N

Doubly Linked Lists (4)

= Inserting & removing at
either end in O(1) time:

& prev pointer eliminates
need to traverse list to
find node just before tail.

» Inserting & deleting
anywhere elsein list:

¢ Simply amatter of
changing the pointers!

2001-03-15 COSC 2011 30
Section N

Doubly Linked Lists (4)

m List ADT with doubly
linked list:

+ Make nodes implement
position interface

* define method
element() which returns
element stored at node.

& Nodes act as positions.

*x Viewed internally by
list as nodes but on the
outside as positions.

2001-03-15 COSC 2011 31
Section N

Doubly Linked Lists (5)

= Intheinterna node view:

¢ Each node hasinstance
variables prev and next

* Refer to predecessor and
successor nodes
respectively.

¢ Given position p we cast it to
anode.

* Once we have node, can
implement for example,
before(p) by returning the
prev reference.

2001-03-15 COSC 2011 32
Section N

Doubly Linked Lists (6)

= Supports object oriented
approach additional time &
space overhead:

+ Hidesimplementation
details from user.

¢ Aidsincodereusesince
user doesn’'t know that the
position objects are
actually treated as nodes!

& Seetext book for pseudo
code and Java Code!

2001-03-15 COSC 2011 33
Section N

Doubly Linked Lists (7)

= Inserting element into list:

= the list before tsertion:

2001-03-15 COSC 2011 34
Section N

Doubly Linked Lists (8)

= Removing element from list:

= {he hst before deletion:

b Frighie

C= Eo G &2
= deleting 4 nocle

= afier deletion:

hoader

i) [wd) ()

2001-03-15 COSC 2011 35
Section N

