COSC 2011 Section N

Tuesday, March 202001
Overview
-Review of Assertions
\bullet Pre and post conditions
-Loop Invariants
-Bubble Sort Algorithm
-Mathematical Induction

- Definition
- Examples
-Assignment 1 Notes/Questions?
2001-03-20

Assertions - Review: (1)

- Assertions:
- A logical condition that is assumed to hold at some point of program execution.
\bullet Precondition:
\star Some condition before the start of execution.
\star May not have any!
\bullet Postconditions:
\star If precondition is true and code is executed, these conditions will now hold.

2001-03-20

2

Loop Invariants: (1)

- An assertion that remains true each time the statements of a loop are executed
-Tells us something about the values of the loop variables while executing a loop.
- Should be true at the beginning of each iteration, including the first!

Loop Invariants: (2)

- Consider the following loop:
while C do S
' p ' is a loop invariant if:

$$
(\mathrm{p} \wedge \mathrm{C}) \rightarrow\{\mathrm{S}\} \rightarrow \mathrm{p}
$$

- If p is a loop invariant and p is true before the loop is executed and the loop terminates then:
$\star \mathrm{p}$ is true and C is not true.

Loop Invariants: (4)

- Examples:
- Array maximum problem
\star Find the max. element in array A of n elements:

Algorithm arrayMax (A, n) :
Input: An array A storing n integers. Output: The maximum element in A . currentMax $\leftarrow \mathrm{A}[0]$
for $i \leftarrow 1$ to $n-1$ do if currentMax $<\mathrm{A}[i]$ then currentMax $\leftarrow \mathrm{A}[i]$
return cumentMax

Loop Invariants: (3)

- Conclusion:

$$
\{\mathrm{p}\} \text { while } \mathrm{C} \text { do } \mathrm{S} \rightarrow\{\mathrm{p} \wedge \neg \mathrm{C}\}
$$

- Book's Variation:
-To prove p , define S in terms of a series of smaller statements $\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$
$\star \mathrm{S}_{0}$ is true before loop
\star If $\mathrm{S}_{\mathrm{i}-1}$ is true before iteration i then S_{i} is true after iteration i is over.
$\star \mathrm{S}_{\mathrm{k}}$ implies p is true.

Loop Invariants: (4)

- Arguing its Correctness:
- Use a simple argument
*currentMax starts out being first element in A
\star Beginning of ith iteration, currentMax $=$ max. of first i elements of A
\star Since currentMax is compared to $\mathrm{A}[\mathrm{i}]$ in iteration i, if this claim is true before this iteration it will be true after it for $\mathrm{i}+1$
\star After n-1 iterations, currentMax = max element

Loop Invariants: (5)

Algorithm $\operatorname{arrayFind}(\mathrm{x}, \mathrm{A})$
Input: element x \& n-element array A
Output: index i s.t. $\mathrm{x}=\mathrm{A}[\mathrm{i}]$ or -1 if no element in A equals x
$\mathrm{i}=0$
while i < n do
if $\mathrm{x}=\mathrm{A}[\mathrm{i}]$ then
return i
else
$\mathrm{i}=\mathrm{i}+1$
return -1

Loop Invariants: (8)

\star When $\mathrm{x}=\mathrm{A}[\mathrm{i}]$, returning is correct.

- If x is not equal to $\mathrm{A}[\mathrm{i}]$ then we found one more element not equal to x
\star increment index i.
- S_{i} is true at start of next iteration.
- If loop terminates without returning index, then it must be true $\mathrm{i}=\mathrm{n}$.
$\star \mathrm{S}_{\mathrm{k}}$ is true - No elements in A equal to x .

Bubble Sort Algorithm (1)

- Bubble-Sort Algorithm
-Sorts a sequence of elements in a sequence in non-decreasing order.
\bullet Performs a series of passes over the sequence
- In each pass, elements are scanned in increasing rank, from rank 0 to the end of the sequence.

Bubble Sort Algorithm (2)

- At each position in each pass, an element is compared with its neighbour.
- If in wrong order, elements are swapped.
-Total of n passes are performed.
- In first pass, when largest element is swapped, it will be swapped until it reaches the end of the sequence.
- In the second pass, the seconds largest element is found etc.
\bullet Running Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Bubble Sort Algorithm (4)

- Loop Invariant - Outer Loop:
-Last i elements of sequence are sorted and are all greater or equal to the other elements of the sequence.
- Loop Invariant - Inner Loop:
-Same as outer loop and the jth element of sequence is greater or equal to the first j elements of sequence.

Bubble Sort Algorithm (3)

Algorithm Bubblesort(sequence):
Input: sequence of integers sequence
Postcondition: sequence is sorted \& contains the same integers as the original sequence
length $=$ length of sequence
for $i=0$ to length -1 do
for $j=0$ to length $-i-2$ do
if j th element of sequence >
($j+1$)th element of sequence
then
swap j th and $(j+1)$ th element of sequence

Bubble Sort Algorithm (5)

- Running Time Analysis:
- Assume access to and swap of elements takes $\mathrm{O}(1)$ time.
\bullet Running time of ith pass:

$$
\mathrm{O}(\operatorname{sum}[n-i+1])
$$

-Can re-write it as:
$\mathrm{O}(\mathrm{n}+(\mathrm{n}+1)+\ldots+2+1)$
$\mathrm{O}(\operatorname{sum}(\mathrm{i})) \mathrm{i}=1 \ldots \mathrm{n}$
By proposition 3.4: $\operatorname{sum}(\mathrm{i})=$ $[\mathrm{n}(\mathrm{n}+1)] / 2$

Mathematical Induction: (1)

- What is a formula for the sum of the first n positive integers?:
- Sums for $\mathrm{n}=1,2,3,4,5$ are:
$1=1$
$1+3=4$
$1+3+5=9$
$1+3+5+7=16$
$1+3+5+7+9=25$
- Appears to be n^{2}.
\star How do we prove it?

2001-03-20 COSC 2011
Section N

Mathematical Induction: (3)

- Can be used only to prove results obtained some some other way:
\bullet Not a tool for discovering formulas or theorems!
- Many theorems state $\mathrm{P}(\mathrm{n})$ is true for all positive integers n
- Mathematical induction is used to prove assertions (propositions) of this kind.

Mathematical Induction: (2)

- Mathematical Induction is used to prove "statements" such as this.
- Used extensively to prove results about about a large variety of discrete objects:
\star Algorithm complexity.
\star Program correctness.
\star Theorems about graphs, trees
*Wide range of equalities and inequalities. COSC 2011
Section N

18

Mathematical Induction: (4)

- Used top prove statements of the form $\forall \mathrm{nP}(\mathrm{n})$, for all positive integers..
- A proof by mathematical induction that $\mathrm{P}(\mathrm{n})$ is true for all positive integers consists of two steps

1. Basis Step: show $\mathrm{P}(1)$ (or $\mathrm{n}=$ some other finite value) is true.
2. Inductive Step: Show $\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$ is true for every positive integer n.

Mathematical Induction: (5)

- $\mathrm{P}(\mathrm{n})$ is called the inductive hypothesis. When both steps are done, then we have shown $\forall \mathrm{nP}(\mathrm{n})$.
$[\mathrm{P}(1) \wedge \forall \mathrm{n}(\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)] \rightarrow \forall \mathrm{nP}(\mathrm{n})$
- To prove the inductive step for every n, we need to show $\mathrm{P}(\mathrm{n})$ cannot be false when $P(n)$ is true.
* Assume $\mathrm{P}(\mathrm{n})$ is true \& show that under this assumption, $\mathrm{P}(\mathrm{n}+1)$ must be true.

Mathematical Induction: (7)

- Useful Illustration:
- Consider a line of people, person 1, person 2 etc. A secret is told to the first person and each person tells the secret to the next person in line.
- Let $\mathrm{P}(\mathrm{n})$ be the statement that person n knows the secret.
* $\mathrm{P}(1)$ is true since it was told to first person.
* $\mathrm{P}(2)$ is true since person 1 tells person 2 and so on...

Mathematical Induction: (6)

- Remark: It is not assumed $\mathrm{P}(\mathrm{n})$ is true for all positive integers! Only shown that if it is assumed $\mathrm{P}(\mathrm{n})$ is true then $\mathrm{P}(\mathrm{n}+1)$ is also true.
- When using induction, we show that $P(1)$ is true. Then since $P(1)$ implies $P(2), P(2)$ must be true. Then $P(3)$ is true because $\mathrm{P}(2)$ implies $\mathrm{P}(3)$. Continuing along these lines, $\mathrm{P}(\mathrm{k})$ is true for any positive integer k .

Mathematical Induction: (9)

- Another Illustration:
- Infinite row of dominos, labeled $1,2,3, \ldots ., n$ \& each domino is standing up.
- Let $\mathrm{P}(\mathrm{n})$ be the statement that domino n is knocked over.
- If the first domino is knocked over, $\mathrm{P}(1)$ is true.
- If whenever first domino is knocked over - $\mathrm{P}(1)$ is true, it knocks the ($\mathrm{n}+1$)th domino over $-\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$ is true, then all dominos are knocked over!

