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Assertions - Review: (1)

n Assertions:

uA logical condition that is 
assumed to hold at some 
point of program execution.

uPrecondition:
«Some condition before 
the start of execution.
«May not have any!

uPostconditions:
«If precondition is true and 
code is executed, these 
conditions will now hold.
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Assertions - Review: (2)

n Notation:

{P} → S → {Q}

If precondition P is true 
before execution of 
statements S, then the 
postcondition Q will be 
true after execution.

Examples:

1. {b=1} → b = b+1 → {b=2}
2. {true} → stack.push(“y”) →

{stack is non-empty}
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Loop Invariants: (1)

n An assertion that remains true 
each time the statements of a 
loop are executed

uTells us something about 
the values of the loop 
variables while executing a 
loop.

uShould be true at the 
beginning of each iteration, 
including the first!
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Loop Invariants: (2)

n Consider the following loop:

while C do S

‘p’ is a loop invariant if:

(p ∧ C) → {S} → p

uIf p is a loop invariant and p 
is true before the loop is 
executed and the loop 
terminates then:

«p is true and C is not true.
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Loop Invariants: (3)

n Conclusion:

{p} while C do S → {p ∧ ¬C}

n Book’s Variation:

uTo prove p, define S in 
terms of a series of smaller 
statements S0, S1, …, Sk

«S0 is true before loop
«If Si-1 is true before 
iteration i then Si is true 
after iteration i is over.
«Sk implies p is true.
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Loop Invariants: (4)

n Examples:

uArray maximum problem

«Find the max. element in 
array A of n elements: 
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Loop Invariants: (4)

n Arguing its Correctness:

uUse a simple argument

«currentMax starts out being 
first element in A
«Beginning of ith iteration, 

currentMax = max. of first i 
elements of A
«Since currentMax is 

compared to A[i] in iteration 
i, if this claim is true before 
this iteration it will be true 
after it for i+1
«After n-1 iterations, 

currentMax = max element
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Loop Invariants: (5)

Algorithm arrayFind(x, A)
Input: element x & n-element 
array A
Output: index i s.t. x = A[i] or –1 
if no element in A equals x

i = 0
while i < n do
if x == A[i] then 

return i
else

i = i + 1
return -1
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Loop Invariants: (7)

n Correctness (Book Method):

n Define series of statements Si:

n Claim: At the beginning of each 
iteration i:

Si: x is not equal to any of the first i 
elements of A

uTrue at beginning of first 
iteration since no elements 
among the first 0 in A

uIn iteration i, compare x to A[i] 
& return i if they are equal
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Loop Invariants: (8)

«When x = A[i], returning is 
correct.

uIf x is not equal to A[i] then we 
found one more element not 
equal to x 

«increment index i. 

• Si is true at start of next 
iteration.

uIf loop terminates without 
returning index, then it must be 
true i == n.

«Sk is true – No elements in A 
equal to x.
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Bubble Sort Algorithm (1)

n Bubble-Sort Algorithm

uSorts a sequence of 
elements in a sequence in 
non-decreasing order.

uPerforms a series of passes 
over the sequence

uIn each pass, elements are 
scanned in increasing rank, 
from rank 0 to the end of the 
sequence.
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Bubble Sort Algorithm (2)

uAt each position in each pass, 
an element is compared with its 
neighbour.

uIf in wrong order, elements are 
swapped.

uTotal of n passes are performed.

uIn first pass, when largest 
element is swapped, it will be 
swapped until it reaches the end 
of the sequence.

uIn the second pass, the seconds 
largest element is found etc.

uRunning Time: O(n2)

2001-03-20 14COSC 2011
Section N

Bubble Sort Algorithm (3)

Algorithm Bubblesort(sequence):

Input: sequence of integers sequence

Postcondition: sequence is sorted &
contains the same integers as the 
original sequence

length = length of sequence

for i = 0 to length - 1 do
for j = 0 to length - i - 2 do

if jth element of sequence >

(j+1)th element of sequence

then
swap jth and (j+1)th element

of sequence
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Bubble Sort Algorithm (4)

n Loop Invariant – Outer Loop:

uLast i elements of sequence 
are sorted and are all greater 
or equal to the other 
elements of the sequence.

n Loop Invariant – Inner Loop:

uSame as outer loop and the 
jth element of sequence is 
greater or equal to the first j 
elements of sequence.
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Bubble Sort Algorithm (5)

n Running Time Analysis:

uAssume access to and swap 
of elements takes O(1) time.

uRunning time of ith pass:

O(sum[n-i+1])

uCan re-write it as:

O(n + (n+1) + … + 2 + 1)
O(sum(i)) i = 1…n

By proposition 3.4: sum(i) = 
[n(n+1)] / 2
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Mathematical Induction: (1)

n What is a formula for the sum 
of the first n positive 
integers?:

uSums for n = 1,2,3,4,5 are:

1= 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16
1+3+5+7+9 = 25

uAppears to be n2.
«How do we prove it?
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Mathematical Induction: (2)

n Mathematical Induction is 
used to prove “statements”
such as this.

uUsed extensively to prove 
results about  about a large 
variety of discrete objects:

«Algorithm complexity.
«Program correctness.
«Theorems about graphs, 
trees
«Wide range of equalities 
and inequalities.
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Mathematical Induction: (3)

n Can be used only to prove 
results obtained some some 
other way:

uNot a tool for discovering 
formulas or theorems!

n Many theorems state P(n) is 
true for all positive integers n

uMathematical induction is 
used to prove assertions 
(propositions) of this kind.
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Mathematical Induction: (4)

n Used top prove statements 
of the form ∀nP(n), for all 
positive integers..

n A proof by mathematical 
induction that P(n) is true 
for all positive integers 
consists of two steps

1. Basis Step: show P(1) (or 
n = some other finite 
value) is true.

2. Inductive Step: Show  
P(n) → P(n+1) is true for 
every positive integer n.
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Mathematical Induction: (5)

n P(n) is called the inductive 
hypothesis. When both steps 
are done, then we have 
shown ∀nP(n).

[P(1) ∧ ∀n(P(n) → P(n+1)] → ∀nP(n)

u To prove the inductive 
step for every n, we need 
to show P(n) cannot be 
false when P(n) is true.  
« Assume P(n) is true & 

show that under this 
assumption, P(n+1) 
must be true.

2001-03-20 22COSC 2011
Section N

Mathematical Induction: (6)

n Remark: It is not assumed 
P(n) is true for all positive 
integers! Only shown that if 
it is assumed P(n) is true 
then P(n+1) is also true.

n When using induction, we 
show that P(1) is true.  Then 
since P(1) implies P(2), P(2) 
must be true. Then P(3) is 
true because P(2) implies 
P(3).  Continuing along 
these lines, P(k) is true for 
any positive integer k.
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Mathematical Induction: (7)

n Useful Illustration:

u Consider a line of people, 
person 1, person 2 etc. A 
secret is told to the first 
person and each person tells 
the secret to the next person 
in line.

u Let P(n) be the statement that 
person n knows the secret.

« P(1) is true since it was 
told to first person.

« P(2) is true since person 1 
tells person 2 and so on…
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Mathematical Induction: (9)

n Another Illustration:

u Infinite row of dominos, 
labeled 1,2,3,….,n & each 
domino is standing up.

u Let P(n) be the statement that 
domino n is knocked over.

u If the first domino is knocked 
over, P(1) is true.

u If whenever first domino is 
knocked over – P(1) is true, it 
knocks the (n+1)th domino 
over – P(n) → P(n+1) is true, 
then all dominos are knocked 
over!


