
1

2001-03-20 1

COSC 2011 Section N
Tuesday, March 20 2001

Overview

nReview of Assertions
uPre and post conditions

nLoop Invariants

nBubble Sort Algorithm

nMathematical Induction
uDefinition

uExamples

nAssignment 1 Notes/Questions?
2001-03-20 2COSC 2011

Section N

Assertions - Review: (1)

n Assertions:

uA logical condition that is
assumed to hold at some
point of program execution.

uPrecondition:
«Some condition before
the start of execution.
«May not have any!

uPostconditions:
«If precondition is true and
code is executed, these
conditions will now hold.

2001-03-20 3COSC 2011
Section N

Assertions - Review: (2)

n Notation:

{P} → S → {Q}

If precondition P is true
before execution of
statements S, then the
postcondition Q will be
true after execution.

Examples:

1. {b=1} → b = b+1 → {b=2}
2. {true} → stack.push(“y”) →

{stack is non-empty}

2001-03-20 4COSC 2011
Section N

Loop Invariants: (1)

n An assertion that remains true
each time the statements of a
loop are executed

uTells us something about
the values of the loop
variables while executing a
loop.

uShould be true at the
beginning of each iteration,
including the first!

2

2001-03-20 5COSC 2011
Section N

Loop Invariants: (2)

n Consider the following loop:

while C do S

‘p’ is a loop invariant if:

(p ∧ C) → {S} → p

uIf p is a loop invariant and p
is true before the loop is
executed and the loop
terminates then:

«p is true and C is not true.

2001-03-20 6COSC 2011
Section N

Loop Invariants: (3)

n Conclusion:

{p} while C do S → {p ∧ ¬C}

n Book’s Variation:

uTo prove p, define S in
terms of a series of smaller
statements S0, S1, …, Sk

«S0 is true before loop
«If Si-1 is true before
iteration i then Si is true
after iteration i is over.
«Sk implies p is true.

2001-03-20 7COSC 2011
Section N

Loop Invariants: (4)

n Examples:

uArray maximum problem

«Find the max. element in
array A of n elements:

2001-03-20 8COSC 2011
Section N

Loop Invariants: (4)

n Arguing its Correctness:

uUse a simple argument

«currentMax starts out being
first element in A
«Beginning of ith iteration,

currentMax = max. of first i
elements of A
«Since currentMax is

compared to A[i] in iteration
i, if this claim is true before
this iteration it will be true
after it for i+1
«After n-1 iterations,

currentMax = max element

3

2001-03-20 9COSC 2011
Section N

Loop Invariants: (5)

Algorithm arrayFind(x, A)
Input: element x & n-element
array A
Output: index i s.t. x = A[i] or –1
if no element in A equals x

i = 0
while i < n do
if x == A[i] then

return i
else

i = i + 1
return -1

2001-03-20 10COSC 2011
Section N

Loop Invariants: (7)

n Correctness (Book Method):

n Define series of statements Si:

n Claim: At the beginning of each
iteration i:

Si: x is not equal to any of the first i
elements of A

uTrue at beginning of first
iteration since no elements
among the first 0 in A

uIn iteration i, compare x to A[i]
& return i if they are equal

2001-03-20 11COSC 2011
Section N

Loop Invariants: (8)

«When x = A[i], returning is
correct.

uIf x is not equal to A[i] then we
found one more element not
equal to x

«increment index i.

• Si is true at start of next
iteration.

uIf loop terminates without
returning index, then it must be
true i == n.

«Sk is true – No elements in A
equal to x.

2001-03-20 12COSC 2011
Section N

Bubble Sort Algorithm (1)

n Bubble-Sort Algorithm

uSorts a sequence of
elements in a sequence in
non-decreasing order.

uPerforms a series of passes
over the sequence

uIn each pass, elements are
scanned in increasing rank,
from rank 0 to the end of the
sequence.

4

2001-03-20 13COSC 2011
Section N

Bubble Sort Algorithm (2)

uAt each position in each pass,
an element is compared with its
neighbour.

uIf in wrong order, elements are
swapped.

uTotal of n passes are performed.

uIn first pass, when largest
element is swapped, it will be
swapped until it reaches the end
of the sequence.

uIn the second pass, the seconds
largest element is found etc.

uRunning Time: O(n2)

2001-03-20 14COSC 2011
Section N

Bubble Sort Algorithm (3)

Algorithm Bubblesort(sequence):

Input: sequence of integers sequence

Postcondition: sequence is sorted &
contains the same integers as the
original sequence

length = length of sequence

for i = 0 to length - 1 do
for j = 0 to length - i - 2 do

if jth element of sequence >

(j+1)th element of sequence

then
swap jth and (j+1)th element

of sequence

2001-03-20 15COSC 2011
Section N

Bubble Sort Algorithm (4)

n Loop Invariant – Outer Loop:

uLast i elements of sequence
are sorted and are all greater
or equal to the other
elements of the sequence.

n Loop Invariant – Inner Loop:

uSame as outer loop and the
jth element of sequence is
greater or equal to the first j
elements of sequence.

2001-03-20 16COSC 2011
Section N

Bubble Sort Algorithm (5)

n Running Time Analysis:

uAssume access to and swap
of elements takes O(1) time.

uRunning time of ith pass:

O(sum[n-i+1])

uCan re-write it as:

O(n + (n+1) + … + 2 + 1)
O(sum(i)) i = 1…n

By proposition 3.4: sum(i) =
[n(n+1)] / 2

5

2001-03-20 17COSC 2011
Section N

Mathematical Induction: (1)

n What is a formula for the sum
of the first n positive
integers?:

uSums for n = 1,2,3,4,5 are:

1= 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16
1+3+5+7+9 = 25

uAppears to be n2.
«How do we prove it?

2001-03-20 18COSC 2011
Section N

Mathematical Induction: (2)

n Mathematical Induction is
used to prove “statements”
such as this.

uUsed extensively to prove
results about about a large
variety of discrete objects:

«Algorithm complexity.
«Program correctness.
«Theorems about graphs,
trees
«Wide range of equalities
and inequalities.

2001-03-20 19COSC 2011
Section N

Mathematical Induction: (3)

n Can be used only to prove
results obtained some some
other way:

uNot a tool for discovering
formulas or theorems!

n Many theorems state P(n) is
true for all positive integers n

uMathematical induction is
used to prove assertions
(propositions) of this kind.

2001-03-20 20COSC 2011
Section N

Mathematical Induction: (4)

n Used top prove statements
of the form ∀nP(n), for all
positive integers..

n A proof by mathematical
induction that P(n) is true
for all positive integers
consists of two steps

1. Basis Step: show P(1) (or
n = some other finite
value) is true.

2. Inductive Step: Show
P(n) → P(n+1) is true for
every positive integer n.

6

2001-03-20 21COSC 2011
Section N

Mathematical Induction: (5)

n P(n) is called the inductive
hypothesis. When both steps
are done, then we have
shown ∀nP(n).

[P(1) ∧ ∀n(P(n) → P(n+1)] → ∀nP(n)

u To prove the inductive
step for every n, we need
to show P(n) cannot be
false when P(n) is true.
« Assume P(n) is true &

show that under this
assumption, P(n+1)
must be true.

2001-03-20 22COSC 2011
Section N

Mathematical Induction: (6)

n Remark: It is not assumed
P(n) is true for all positive
integers! Only shown that if
it is assumed P(n) is true
then P(n+1) is also true.

n When using induction, we
show that P(1) is true. Then
since P(1) implies P(2), P(2)
must be true. Then P(3) is
true because P(2) implies
P(3). Continuing along
these lines, P(k) is true for
any positive integer k.

2001-03-20 23COSC 2011
Section N

Mathematical Induction: (7)

n Useful Illustration:

u Consider a line of people,
person 1, person 2 etc. A
secret is told to the first
person and each person tells
the secret to the next person
in line.

u Let P(n) be the statement that
person n knows the secret.

« P(1) is true since it was
told to first person.

« P(2) is true since person 1
tells person 2 and so on…

2001-03-20 24COSC 2011
Section N

Mathematical Induction: (9)

n Another Illustration:

u Infinite row of dominos,
labeled 1,2,3,….,n & each
domino is standing up.

u Let P(n) be the statement that
domino n is knocked over.

u If the first domino is knocked
over, P(1) is true.

u If whenever first domino is
knocked over – P(1) is true, it
knocks the (n+1)th domino
over – P(n) → P(n+1) is true,
then all dominos are knocked
over!

