COSC 2011 Section N

Tuesday, March 202001
Overview
-Mathematical Induction
\bullet Definition, Examples
-Introduction to Recursion
\bullet Definition, Examples
-Assignment 1 Notes/Questions?
\bullet For loop time analysis

Bubble Sort Algorithm (1)

Algorithm Bubblesort(sequence):
Input: sequence of integers sequence
Postcondition: sequence is sorted \& contains the same integers as the original sequence
length $=$ length of sequence
for $i=0$ to length -1 do
for $j=0$ to length $-i-2$ do
if j th element of sequence $>$
$(j+1)$ th element of sequence
then
swap j th and $(j+1)$ th element of sequence

Loop Invariants: (1)

- An assertion that remains true each time the statements of a loop are executed
-Tells us something about the values of the loop variables while executing a loop.
- Should be true at the beginning of each iteration, including the first!
$\{\mathrm{p}\}$ while C do $\mathrm{S} \rightarrow\{\mathrm{p} \wedge \neg \mathrm{C}\}$

Bubble Sort Algorithm (2)

- Loop Invariant - Outer Loop:
-Last i elements of sequence are sorted and are all greater or equal to the other elements of the sequence.
- Loop Invariant - Inner Loop:
- Same as outer loop and the jth element of sequence is greater or equal to the first j elements of sequence.

Bubble Sort Algorithm (3)

- Running Time Analysis:
- Assume access to and swap of elements takes $\mathrm{O}(1)$ time.
\bullet Running time of ith pass:
$\mathrm{O}(\mathrm{sum}[\mathrm{n}-\mathrm{i}+1])$
-Can re-write it as:
$\mathrm{O}(\mathrm{n}+(\mathrm{n}+1)+\ldots+2+1)$
O(sum(i))
By proposition 3.4:
$\operatorname{sum}(\mathrm{i})=[\mathrm{n}(\mathrm{n}+1)] / 2$

Mathematical Induction: (2)

- Used top prove statements of the form $\forall \mathrm{nP}(\mathrm{n})$, for all positive integers.
- A proof by mathematical induction that $\mathrm{P}(\mathrm{n})$ is true for all positive integers consists of two steps

1. Basis Step: show $\mathrm{P}(1)$ (or $\mathrm{n}=$ some other finite value) is true.
2. Inductive Step: Show $\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$ is true for every positive integer n.

Mathematical Induction: (1)

- Can be used only to prove results obtained some some other way:
- Not a tool for discovering formulas or theorems!
- Many theorems state $\mathrm{P}(\mathrm{n})$ is true for all positive integers n
\bullet Mathematical induction is used to prove assertions (propositions) of this kind.

Mathematical Induction: (3)

- $\mathrm{P}(\mathrm{n})$ is called the inductive hypothesis. When both steps are done, then we have shown $\forall \mathrm{nP}(\mathrm{n})$.
$[\mathrm{P}(1) \wedge \forall \mathrm{n}(\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)] \rightarrow \forall \mathrm{nP}(\mathrm{n})$
- To prove the inductive step for every n , we need to show $\mathrm{P}(\mathrm{n})$ cannot be false when $\mathrm{P}(\mathrm{n})$ is true.
* Assume $\mathrm{P}(\mathrm{n})$ is true \& show that under this assumption, $\mathrm{P}(\mathrm{n}+1)$ must be true.

Mathematical Induction: (4)

- Remark: It is not assumed $\mathrm{P}(\mathrm{n})$ is true for all positive integers! Only shown that if it is assumed $\mathrm{P}(\mathrm{n})$ is true then $\mathrm{P}(\mathrm{n}+1)$ is also true.
- When using induction, we show that $P(1)$ is true. Then since $\mathrm{P}(1)$ implies $\mathrm{P}(2), \mathrm{P}(2)$ must be true. Then $\mathrm{P}(3)$ is true because $\mathrm{P}(2)$ implies $\mathrm{P}(3)$. Continuing along these lines, $\mathrm{P}(\mathrm{k})$ is true for any positive integer k .

Mathematical Induction: (5)

- Useful Illustration:
- Consider a line of people, person 1, person 2 etc. A secret is told to the first person and each person tells the secret to the next person in line.
- Let $\mathrm{P}(\mathrm{n})$ be the statement that person n knows the secret.
* $\mathrm{P}(1)$ is true since it was told to first person.
* $\mathrm{P}(2)$ is true since person 1 tells person 2 and so on...

Mathematical Induction: (6)

- Another Illustration:
- Infinite row of dominos, labeled $1,2,3, \ldots, n$ \& each domino is standing up.
- Let $\mathrm{P}(\mathrm{n})$ be the statement that domino n is knocked over.
- If the first domino is knocked over, $\mathrm{P}(1)$ is true.
- If whenever first domino is knocked over - $\mathrm{P}(1)$ is true, it knocks the ($\mathrm{n}+1$)th domino over $-\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$ is true, then all dominos are knocked over!

Mathematical Induction: (7)

- Sometimes we need to show $\mathrm{P}(\mathrm{n})$ is true for $\mathrm{n}=\mathrm{k}, \mathrm{k}+1$, $\mathrm{k}+2 \ldots$ where k is an integer other than 1.
- Can still use induction as long as we change the Basis Step.
- Show $P(k)$ is true and then show $\mathrm{P}(\mathrm{n}) \mathrm{P}(\mathrm{n}+1)$ is true for $n=k, k+1, k+2 \ldots$
- K can be negative, positive or zero.

Recursive Methods (1):

- Sometimes we can reduce the solution to a problem with a particular input to the solution of the same problem with smaller input.
- Solution to the original problem can be found with a sequence of reductions until problem is reduced to some initial case where solution is known.

Recursion (Math): (3):

* Rule for finding a term of the sequence from the previous one.
- Recursively Defined Functions:

1. Specify the value of the function at 0 .
2. Give rule for finding its value as an integer from its values at smaller integers.

Recursion (Math): (2):

- Defintion (Mathematical):
- When an object is defined in terms of itself.
- Can be Used to Define:
- Sequences, functions sets.
- Example:
- Sequence of powers of 2 is given by $\mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}}$
- Can also be defined as:
* Give the first term of the sequence: $\mathrm{a}_{0}=1$

Recursion (Math): (4):

- Example:
- f is defined recursively as:

$$
f(0)=3
$$

$f(\mathrm{n}+1)=2 f(\mathrm{n})+3$
$f(1)=2 f(0)+3=(2 \times 3)+3=9$
$f(2)=2 f(1)+3=(2 \times 9)+3=21$
$f(3)=2 f(2)+3=(2 \times 21)+3=45$

- Question:
- Give an inductive defintion of the factorial function: $f(\mathrm{n})=\mathrm{n}$!

Recursion (Math): (5):

- Solution:
- Initial value:

$$
f(0)=1
$$

- Rule for finding $f(\mathrm{n}+1)$:
* ($\mathrm{n}+1$)! is computed by multiplying n ! by $(\mathrm{n}+1)$
$f(\mathrm{n}+1)=f(\mathrm{n}) \times(\mathrm{n}+1)$
- Determining the Value of the Factorial Function:
- Use the rule that shows how to express $f(\mathrm{n}+1)$

Recursion (Math): (7):

- Example: Fibonacci

Numbers $\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots \mathrm{f}_{\mathrm{n}}$ are defined as follows:

$$
\begin{aligned}
& \mathrm{f}_{0}=0 \\
& \mathrm{f}_{1}=1 \text { and } \\
& \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2} \quad \mathrm{n}=2,3,4 \ldots
\end{aligned}
$$

- What are $\mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}$?
\qquad

Recursion (Math): (6):

- In terms of $f(\mathrm{n})$ several times:
- Example of $f(4)=4$!
$f(4)=4 f(3)=4 \times 3 f(2)=4 \times 3 \times$
$2 f(1)=4 \times 3 \times 2 \times 1 \times f(0)=4$
$\times 3 \times 2 \times 1 \times 1=24$
- When $f(0)$ is the only function that occurs, no more reductions are necessary.
* Only thing to do is insert $f(0)$ into formula.

Recursion (Math): (8):

- Solution to Fibonacci

Numbers for $\mathrm{n}=2,3,4,5,6$

$$
\begin{aligned}
& \mathrm{f}_{2}=\mathrm{f}_{1}+\mathrm{f}_{0}=1=0=1 \\
& \mathrm{f}_{3}=\mathrm{f}_{2}+\mathrm{f}_{1}=1+1=2 \\
& \mathrm{f}_{4}=\mathrm{f}_{3}+\mathrm{f}_{2}=2+1=3 \\
& \mathrm{f}_{5}=\mathrm{f}_{4}+\mathrm{f}_{3}=3+2=5 \\
& \mathrm{f}_{6}=\mathrm{f}_{5}+\mathrm{f}_{4}=5+3=8
\end{aligned}
$$

Recursive Methods (1):

- A method is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.
- A Recursive Method calls itself as a subroutine with.
- Each time it calls itself, the problem is "reduced" until we reach a point where the problem is small enough to be easily solved.

Recursive Methods (3):

- Eventually the problem can be reduced to base cases only, all of which are easy to solve!
- Recursive algorithms we will encounter will generally be of the form:

If base case reached then solve it else
reduce problem using recursion

Recursive Methods (2):

- Candidate Problems for Recursion Have the Following Characteristics:
- One or more simple cases of the problem have simple non-recursive solution (base cases).
- For other cases there is a process for substituting one or more reduced cases of the problem that are closer to the base case.

Recursive Methods (4):

- Recursive Factorial: public static long factorial(long n) $\{$
if ($\mathrm{n}<=1$)
return 1;
else
return n * factorial($\mathrm{n}-1$);
\}
- Method calls itself recursively to compute factorial of $\mathrm{n}-1$.
- When recursive call terminates, returns ($\mathrm{n}-1$)!

Recursive Methods (5):

- ($\mathrm{n}-1$)! Is then multiplied by n to compute n !.
- In turn, recursive invocation calls itself to compute the factorial of $n-2$, etc...
- To compute n!, multiply n by factorial of $\mathrm{n}-1$. But how do we calculate factorial(n-1)?
^ We call the factorial method with $\mathrm{n}-1$ as an argument...
\qquad
25

Recursive Methods (7):

- Example: Fibonacci

Numbers
public static long fibonacci(long n$)$ \{
if $(\mathrm{n}==0$)
return 0 ;
else if ($\mathrm{n}==1$)
return 1;
else
return fibonacci($\mathrm{n}-1)+$ fibonacci(n-2);
\}

Recursive Methods (6):

- Important Properties Every Recursive Methods Should Possess:
- Method must terminate!
* Base case
* Even infinite recursive method will terminate!
- Always perform the recursive call on a smaller input value.
* Reduce the problem at every recursive call.

Recursion \& Induction:

- Notice the Similarity Between Recursion and Induction!
- Induction can be used to prove the correctness of many recursive formulas \& functions!
- Problem with Recursion:
- Usually require more computation and space over an iterative approach

