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Overview

sMathematical Induction
+Definition, Examples

sl ntroduction to Recursion
+Definition, Examples

sAssignment 1 Notes/Questions?
oFor loop time analysis
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Loop Invariants: (1)

= An assertion that remains true
each time the statements of a
loop are executed

+ Tells us something about
the values of the loop
variables while executing a
loop.

+ Should be true at the
beginning of each iteration,
including the first!

{p} whileCdoS® {pU-C}
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Bubble Sort Algorithm (1)

Algorithm Bubblesort(sequence):
Input: sequence of integers sequence
Postcondition: sequenceis sorted &

contains the same integers asthe
original sequence
length = length of sequence
fori=0tolength-1do
for j=0tolength-i-2do
if jth element of sequence >
(j+1)th element of sequence

then
swap jthand (j+1)th element

of sequence
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Bubble Sort Algorithm (2)
= Loop Invariant — Outer L oop:

eLast i elements of sequence
are sorted and are all greater
or equal to the other
elements of the sequence.

» Loop Invariant — Inner Loop:

+ Same as outer loop and the
jth element of sequence is
greater or equal to thefirst |
elements of sequence.
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Bubble Sort Algorithm (3)
= Running Time Analysis:

« Assume access to and swap
of elements takes O(1) time.

+Running time of ith pass:
O(sum[n-i+1])
eCanre-writeit as:
On+(ntl) +...+2+1)
O(sum(i))
By proposition 3.4:
sum(i) = [n(n+1)] / 2
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Mathematical Induction: (1)

= Can be used only to prove
results obtained some some
other way:

+Not atool for discovering
formulas or theorems!

» Many theorems state P(n) is
true for all positive integers n

e Mathematical induction is
used to prove assertions
(propositions) of this kind.
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Mathematical Induction: (2)

» Used top prove statements
of theform " nP(n), for al
positive integers.

= A proof by mathematical
induction that P(n) is true
for all positive integers
consists of two steps

1. Basis Step: show P(1) (or
n = some other finite
value) istrue.

2. Inductive Step: Show
P(n) ® P(n+1) istruefor
every positive integer n.
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Mathematical Induction: (3)

= P(n) iscaled the inductive
hypothesis. When both steps
are done, then we have
shown " nP(n).

[P(1) U n(P(n) ® P(n+1)] ® " nP(n)

e To provetheinductive
step for every n, we need
to show P(n) cannot be
false when P(n) istrue.

» Assume P(n) istrue &
show that under this
assumption, P(n+1)
must be true.
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Mathematical Induction: (4)

= Remark: Itisnot assumed
P(n) istrue for all positive
integers! Only shown that if
it isassumed P(n) istrue
then P(n+1) is also true.

= When using induction, we
show that P(1) istrue. Then
since P(1) implies P(2), P(2)
must be true. Then P(3) is
true because P(2) implies
P(3). Continuing along
these lines, P(K) istrue for
any positive integer k.
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Mathematical Induction: (5)

s Useful Illustration:

o Consider aline of people,
person 1, person 2 etc. A
secret istold to the first
person and each person tells
the secret to the next person
inline.

¢ Let P(n) be the statement that
person n knows the secret.

x P(1) istruesince it was
told to first person.

*x  P(2) istrue since person 1
tells person 2 and so on...
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Mathematical Induction: (6)

s Another Illustration:

¢ Infinite row of dominos,
labeled 1,2,3,....,n & each
domino is standing up.

+ Let P(n) be the statement that
domino n is knocked over.

¢ |If thefirst domino is knocked
over, P(1) istrue.

+ If whenever first domino is
knocked over — P(1) istrue, it
knocks the (n+1)th domino
over —P(n) ® P(n+1) istrue,
then all dominos are knocked
over!
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Mathematical Induction: (7)

= Sometimes we need to show
P(n) istrue for n=k, k+1,
k+2... where k is an integer
other than 1.

¢ Can still use induction as
long as we change the
Basis Sep.

o Show P(k) istrue and
then show P(n) P(n+1) is
truefor n =k, k+1, k+2...

¢ K can be negative,
positive or zero.
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Recursive Methods (1):

= Sometimes we can reduce
the solution to a problem
with a particular input to the
solution of the same
problem with smaller input.

+ Solution to the original
problem can be found
with a sequence of
reductions until problem
isreduced to some initial
case where solution is
known.
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Recursion (Math): (2):
» Defintion (Mathematical):

+ When an object is defined
in terms of itself.

= Can be Used to Define:
+ Sequences, functions sets.

» Example
+ Sequence of powers of 2
iIsgivenby g,=2"

¢ Can dso be defined as:

x Givethefirst term of
the sequence: g, = 1

COSC 2011 14
Section

Recursion (Math): (3):

» Rulefor finding aterm
of the sequence from
the previous one.

» Recursively Defined
Functions:

1. Specify the value of the
function at O.

2. Giverulefor finding its
value as an integer from
its values at smaller
integers.
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Recursion (Math): (4):
» Example:
o fisdefined recursively as:
f(0) =3
f(n+ 1) =2f(n) + 3
f(1) = 2f(0) +3=(2" 3)+3=9
f=2f(1))+3=(2" 9 +3=21
f(3)=2f(2) +3=(2" 21) +3=145
s Question:
+ Giveaninductive
defintion of the factorial
function: f(n) = n!
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Recursion (Math): (5):
= Solution:
+ [Initia value:
f0)=1

+ Rulefor finding f(n+1):
» (n+1)! is computed by
multiplying n! by (n+1)
f(n+1) =f(n) ~ (n+1)
= Determining the Value of
the Factorial Function:

¢ Usetherule that shows
how to express f(n+1)

COSC 2011 17
Section

Recursion (Math): (6):

¢ Intermsof f(n) several
times:

»  Exampleof f(4) = 4!

f(4) = 4f(3) =4~ 3f(2)=4" 3~
2f(1)=4"3 2" 1" f(0)=4
37271 1=24

¢ When f(0) isthe only
function that occurs, no
more reductions are
necessary.

x Only thingtodois
insert f(0) into formula
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Recursion (Math): (7):

s Example: Fibonacci
Numbersf,, f;, f,, ... f, are
defined as follows:

fo =0,
f, =1and
f,=f1+fo Nn=234..

o What aref,, f;, fy, f5?
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Recursion (Math): (8):

o Solution to Fibonacci
Numbers for n = 2,3,4,5,6

fo=f,+f,=1=0=1
fo=f,+f,=1+1=2
fy=fy+f,=2+1=3
fo=f,+f,=3+2=5
fo=fg+f,=5+3=8
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Recursive Methods (1):

= A method iscalled recursive
if it solves a problem by
reducing it to an instance of
the same problem with
smaller input.

¢ A Recursive Method calls
itself as a subroutine with.

o Eachtimeit calsitsdlf,
the problem is “reduced”
until we reach a point
where the problem is
small enough to be easily
solved.
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Recursive Methods (2):

s Candidate Problems for
Recursion Have the
Following Characteristics:

o One or more simple cases
of the problem have
simple non-recursive
solution (base cases).

¢ [For other cases thereisa
process for substituting
one or more reduced
cases of the problem that
are closer to the base
case.
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Recursive Methods (3):

+ Eventually the problem
can be reduced to base
cases only, all of which
are easy to solve!

+ Recursive algorithmswe
will encounter will
generaly be of the form:

I f base case reached then
solve it

else

reduce problem using
recursion
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Recursive Methods (4):

s Recursive Factorid:

public static long factorial (long n){
if (n<=1)
return 1;
else
returnn* factorial(n—1);
}
¢ Maethod callsitself
recursively to compute
factorial of n-1.

¢ Whenrecursivecal
terminates, returns (n-1)!
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Recursive Methods (5):

¢ (n-1)! Isthen multiplied by n
to compute n!.

¢ Inturn, recursive invocation
callsitself to compute the
factorial of n-2, etc...

¢ Tocompute n!, multiply n by
factorial of n-1. But how do
we calculate factorial(n-1)?

*  We call the factorid
method with n-1 as an
argument...
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Recursive Methods (6):

= Important Properties Every
Recursive Methods Should
Possess:

¢ Method must terminate!
» Base case
* Eveninfinite recursive
method will terminate!

¢ Always perform the
recursive call on asmaller
input value.

» Reduce the problem at
every recursive call.
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Recursive Methods (7):

s Example: Fibonacci
Numbers

public static long fibonacci (long n){
if (n==0)
return 0;
elseif (n==1)
return 1;
else

return fibonacci(n—1) +
fibonacci(n-2);
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Recursion & Induction:

= Notice the Similarity
Between Recursion and
Induction!

¢ Induction can be used to
prove the correctness of
many recursive formulas
& functions!

s Problem with Recursion:
o Usualy require more

computation and space
over an iterative approach
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