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Overview

nMathematical Induction

uDefinition, Examples

nIntroduction to Recursion

uDefinition, Examples

nAssignment 1 Notes/Questions?

uFor loop time analysis
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Loop Invariants: (1)

n An assertion that remains true 
each time the statements of a 
loop are executed

uTells us something about 
the values of the loop 
variables while executing a 
loop.

uShould be true at the 
beginning of each iteration, 
including the first!

{p} while C do S → {p ∧ ¬C}
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Bubble Sort Algorithm (1)

Algorithm Bubblesort(sequence):

Input: sequence of integers sequence

Postcondition: sequence is sorted &
contains the same integers as the 
original sequence

length = length of sequence

for i = 0 to length - 1 do
for j = 0 to length - i - 2 do

if jth element of sequence >

(j+1)th element of sequence

then
swap jth and (j+1)th element

of sequence
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Bubble Sort Algorithm (2)

n Loop Invariant – Outer Loop:

uLast i elements of sequence 
are sorted and are all greater 
or equal to the other 
elements of the sequence.

n Loop Invariant – Inner Loop:

uSame as outer loop and the 
jth element of sequence is 
greater or equal to the first j 
elements of sequence.
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Bubble Sort Algorithm (3)

n Running Time Analysis:

uAssume access to and swap 
of elements takes O(1) time.

uRunning time of ith pass:

O(sum[n-i+1])

uCan re-write it as:

O(n + (n+1) + … + 2 + 1)
O(sum(i))

By proposition 3.4: 
sum(i) = [n(n+1)] / 2
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Mathematical Induction: (1)

n Can be used only to prove 
results obtained some some 
other way:

uNot a tool for discovering 
formulas or theorems!

n Many theorems state P(n) is 
true for all positive integers n

uMathematical induction is 
used to prove assertions 
(propositions) of this kind.
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Mathematical Induction: (2)

n Used top prove statements 
of the form ∀nP(n), for all 
positive integers.

n A proof by mathematical 
induction that P(n) is true 
for all positive integers 
consists of two steps

1. Basis Step: show P(1) (or 
n = some other finite 
value) is true.

2. Inductive Step: Show  
P(n) → P(n+1) is true for 
every positive integer n.

2001-03-22 8COSC 2011 
Section N

Mathematical Induction: (3)

n P(n) is called the inductive 
hypothesis. When both steps 
are done, then we have 
shown ∀nP(n).

[P(1) ∧ ∀n(P(n) → P(n+1)] → ∀nP(n)

u To prove the inductive 
step for every n, we need 
to show P(n) cannot be 
false when P(n) is true.  
« Assume P(n) is true & 

show that under this 
assumption, P(n+1) 
must be true.



3

2001-03-22 9COSC 2011 
Section N

Mathematical Induction: (4)

n Remark: It is not assumed 
P(n) is true for all positive 
integers! Only shown that if 
it is assumed P(n) is true 
then P(n+1) is also true.

n When using induction, we 
show that P(1) is true.  Then 
since P(1) implies P(2), P(2) 
must be true. Then P(3) is 
true because P(2) implies 
P(3).  Continuing along 
these lines, P(k) is true for 
any positive integer k.
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Mathematical Induction: (5)

n Useful Illustration:

u Consider a line of people, 
person 1, person 2 etc. A 
secret is told to the first 
person and each person tells 
the secret to the next person 
in line.

u Let P(n) be the statement that 
person n knows the secret.

« P(1) is true since it was 
told to first person.

« P(2) is true since person 1 
tells person 2 and so on…
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Mathematical Induction: (6)

n Another Illustration:

u Infinite row of dominos, 
labeled 1,2,3,….,n & each 
domino is standing up.

u Let P(n) be the statement that 
domino n is knocked over.

u If the first domino is knocked 
over, P(1) is true.

u If whenever first domino is 
knocked over – P(1) is true, it 
knocks the (n+1)th domino 
over – P(n) → P(n+1) is true, 
then all dominos are knocked 
over!
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Mathematical Induction: (7)

n Sometimes we need to show 
P(n) is true for n=k, k+1, 
k+2… where k is an integer 
other than 1.

u Can still use induction as 
long as we change the 
Basis Step.

u Show P(k) is true and 
then show P(n) P(n+1) is 
true for n = k, k+1, k+2…

u K can be negative, 
positive or zero.
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Recursive Methods (1):

n Sometimes we can reduce 
the solution to a problem 
with a particular input to the 
solution of the same 
problem with smaller input.

u Solution to the original 
problem can be found 
with a sequence of 
reductions until problem 
is reduced to some initial 
case where solution is 
known.
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Recursion (Math): (2):

n Defintion (Mathematical):

u When an object is defined 
in terms of itself.

n Can be Used to Define:
u Sequences, functions sets.

n Example:
u Sequence of powers of 2 

is given by an = 2n

u Can also be defined as:
« Give the first term of 

the sequence: a0 = 1
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Recursion (Math): (3):

« Rule for finding a term 
of the sequence from 
the previous one.

n Recursively Defined 
Functions:

1. Specify the value of the 
function at 0.

2. Give rule for finding its 
value as an integer from 
its values at smaller 
integers.
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Recursion (Math): (4):

n Example:

u f is defined recursively as:

f(0) = 3
f(n + 1) = 2f(n) + 3

f(1) = 2f(0) + 3 = (2 × 3) + 3 = 9

f(2) = 2f(1) + 3 = (2 × 9) + 3 = 21

f(3) = 2f(2) + 3 = (2 × 21) + 3 = 45

n Question:
u Give an inductive 

defintion of the factorial 
function: f(n) = n!
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Recursion (Math): (5):

n Solution:

u Initial value:

f(0) = 1

u Rule for finding f(n+1):
« (n+1)! is computed by 

multiplying n! by (n+1)

f(n+1) = f(n) × (n+1)

n Determining the Value of 
the Factorial Function:
u Use the rule that shows 

how to express f(n+1)
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Recursion (Math): (6):

u In terms of f(n) several 
times:

n Example of f(4) = 4!

f(4) = 4f(3) = 4 × 3f(2) = 4 × 3 ×
2f(1) = 4 × 3 × 2 × 1 × f(0) = 4 
× 3 × 2 × 1 × 1 = 24

u When f(0) is the only 
function that occurs, no 
more reductions are 
necessary.
« Only thing to do is 

insert f(0) into formula.
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Recursion (Math): (7):

n Example: Fibonacci
Numbers f0, f1, f2, … fn are 
defined as follows:

f0 = 0, 

f1 = 1 and 

fn = fn-1 + fn-2 n = 2,3,4…

u What are f2, f3, f4, f5?

2001-03-22 20COSC 2011 
Section N

Recursion (Math): (8):

u Solution to Fibonacci
Numbers for n = 2,3,4,5,6

f2 = f1 + f0 = 1 = 0 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

f6 = f5 + f4 = 5 + 3 = 8
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Recursive Methods (1):

n A method is called recursive
if it solves a problem by 
reducing it to an instance of 
the same problem with 
smaller input.

u A Recursive Method calls 
itself as a subroutine with.

u Each time it calls itself, 
the problem is “reduced”
until we reach a point 
where the problem is 
small enough to be easily 
solved. 
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Recursive Methods (2):

n Candidate Problems for 
Recursion Have the 
Following Characteristics:

u One or more simple cases 
of the problem have 
simple non-recursive 
solution (base cases).

u For other cases there is a 
process for substituting 
one or more reduced 
cases of the problem that 
are closer to the base 
case.
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Recursive Methods (3):

u Eventually the problem 
can be reduced to base 
cases only, all of which 
are easy to solve!

u Recursive algorithms we 
will encounter will 
generally be of the form:

If base case reached then
solve it

else
reduce problem using 

recursion
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Recursive Methods (4):

n Recursive Factorial:

public static long factorial(long n){

if (n <= 1)

return 1;

else

return n * factorial(n – 1);

}

u Method calls itself 
recursively to compute 
factorial of n-1.

u When recursive call 
terminates, returns (n-1)!
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Recursive Methods (5):

u (n-1)! Is then multiplied by n 
to compute n!.

u In turn, recursive invocation 
calls itself to compute the 
factorial of n-2, etc…

u To compute n!, multiply n by 
factorial of n-1.  But how do 
we calculate factorial(n-1)?

« We call the factorial 
method with n-1 as an 
argument…
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Recursive Methods (6):

n Important Properties Every 
Recursive Methods Should 
Possess:

u Method must terminate!
« Base case
« Even infinite  recursive 

method will terminate!

u Always perform the 
recursive call on a smaller 
input value.
« Reduce the problem at 

every recursive call.
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Recursive Methods (7):

n Example: Fibonacci 
Numbers

public static long fibonacci(long n){

if (n = = 0)

return 0;

else if (n == 1) 

return 1;

else

return fibonacci(n – 1) + 
fibonacci(n-2);

}
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Recursion & Induction:

n Notice the Similarity 
Between Recursion and 
Induction!

u Induction can be used to 
prove the correctness of 
many recursive formulas 
& functions!

n Problem with Recursion:

u Usually require more 
computation and space 
over an iterative approach


