
1

2001-03-22 1

COSC 2011 Section N

Tuesday, March 20 2001

Overview

nMathematical Induction

uDefinition, Examples

nIntroduction to Recursion

uDefinition, Examples

nAssignment 1 Notes/Questions?

uFor loop time analysis

2001-03-22 2COSC 2011
Section N

Loop Invariants: (1)

n An assertion that remains true
each time the statements of a
loop are executed

uTells us something about
the values of the loop
variables while executing a
loop.

uShould be true at the
beginning of each iteration,
including the first!

{p} while C do S → {p ∧ ¬C}

2001-03-22 3COSC 2011
Section N

Bubble Sort Algorithm (1)

Algorithm Bubblesort(sequence):

Input: sequence of integers sequence

Postcondition: sequence is sorted &
contains the same integers as the
original sequence

length = length of sequence

for i = 0 to length - 1 do
for j = 0 to length - i - 2 do

if jth element of sequence >

(j+1)th element of sequence

then
swap jth and (j+1)th element

of sequence

2001-03-22 4COSC 2011
Section N

Bubble Sort Algorithm (2)

n Loop Invariant – Outer Loop:

uLast i elements of sequence
are sorted and are all greater
or equal to the other
elements of the sequence.

n Loop Invariant – Inner Loop:

uSame as outer loop and the
jth element of sequence is
greater or equal to the first j
elements of sequence.

2

2001-03-22 5COSC 2011
Section N

Bubble Sort Algorithm (3)

n Running Time Analysis:

uAssume access to and swap
of elements takes O(1) time.

uRunning time of ith pass:

O(sum[n-i+1])

uCan re-write it as:

O(n + (n+1) + … + 2 + 1)
O(sum(i))

By proposition 3.4:
sum(i) = [n(n+1)] / 2

2001-03-22 6COSC 2011
Section N

Mathematical Induction: (1)

n Can be used only to prove
results obtained some some
other way:

uNot a tool for discovering
formulas or theorems!

n Many theorems state P(n) is
true for all positive integers n

uMathematical induction is
used to prove assertions
(propositions) of this kind.

2001-03-22 7COSC 2011
Section N

Mathematical Induction: (2)

n Used top prove statements
of the form ∀nP(n), for all
positive integers.

n A proof by mathematical
induction that P(n) is true
for all positive integers
consists of two steps

1. Basis Step: show P(1) (or
n = some other finite
value) is true.

2. Inductive Step: Show
P(n) → P(n+1) is true for
every positive integer n.

2001-03-22 8COSC 2011
Section N

Mathematical Induction: (3)

n P(n) is called the inductive
hypothesis. When both steps
are done, then we have
shown ∀nP(n).

[P(1) ∧ ∀n(P(n) → P(n+1)] → ∀nP(n)

u To prove the inductive
step for every n, we need
to show P(n) cannot be
false when P(n) is true.
« Assume P(n) is true &

show that under this
assumption, P(n+1)
must be true.

3

2001-03-22 9COSC 2011
Section N

Mathematical Induction: (4)

n Remark: It is not assumed
P(n) is true for all positive
integers! Only shown that if
it is assumed P(n) is true
then P(n+1) is also true.

n When using induction, we
show that P(1) is true. Then
since P(1) implies P(2), P(2)
must be true. Then P(3) is
true because P(2) implies
P(3). Continuing along
these lines, P(k) is true for
any positive integer k.

2001-03-22 10COSC 2011
Section N

Mathematical Induction: (5)

n Useful Illustration:

u Consider a line of people,
person 1, person 2 etc. A
secret is told to the first
person and each person tells
the secret to the next person
in line.

u Let P(n) be the statement that
person n knows the secret.

« P(1) is true since it was
told to first person.

« P(2) is true since person 1
tells person 2 and so on…

2001-03-22 11COSC 2011
Section N

Mathematical Induction: (6)

n Another Illustration:

u Infinite row of dominos,
labeled 1,2,3,….,n & each
domino is standing up.

u Let P(n) be the statement that
domino n is knocked over.

u If the first domino is knocked
over, P(1) is true.

u If whenever first domino is
knocked over – P(1) is true, it
knocks the (n+1)th domino
over – P(n) → P(n+1) is true,
then all dominos are knocked
over!

2001-03-22 12COSC 2011
Section N

Mathematical Induction: (7)

n Sometimes we need to show
P(n) is true for n=k, k+1,
k+2… where k is an integer
other than 1.

u Can still use induction as
long as we change the
Basis Step.

u Show P(k) is true and
then show P(n) P(n+1) is
true for n = k, k+1, k+2…

u K can be negative,
positive or zero.

4

2001-03-22 13COSC 2011
Section N

Recursive Methods (1):

n Sometimes we can reduce
the solution to a problem
with a particular input to the
solution of the same
problem with smaller input.

u Solution to the original
problem can be found
with a sequence of
reductions until problem
is reduced to some initial
case where solution is
known.

2001-03-22 14COSC 2011
Section N

Recursion (Math): (2):

n Defintion (Mathematical):

u When an object is defined
in terms of itself.

n Can be Used to Define:
u Sequences, functions sets.

n Example:
u Sequence of powers of 2

is given by an = 2n

u Can also be defined as:
« Give the first term of

the sequence: a0 = 1

2001-03-22 15COSC 2011
Section N

Recursion (Math): (3):

« Rule for finding a term
of the sequence from
the previous one.

n Recursively Defined
Functions:

1. Specify the value of the
function at 0.

2. Give rule for finding its
value as an integer from
its values at smaller
integers.

2001-03-22 16COSC 2011
Section N

Recursion (Math): (4):

n Example:

u f is defined recursively as:

f(0) = 3
f(n + 1) = 2f(n) + 3

f(1) = 2f(0) + 3 = (2 × 3) + 3 = 9

f(2) = 2f(1) + 3 = (2 × 9) + 3 = 21

f(3) = 2f(2) + 3 = (2 × 21) + 3 = 45

n Question:
u Give an inductive

defintion of the factorial
function: f(n) = n!

5

2001-03-22 17COSC 2011
Section N

Recursion (Math): (5):

n Solution:

u Initial value:

f(0) = 1

u Rule for finding f(n+1):
« (n+1)! is computed by

multiplying n! by (n+1)

f(n+1) = f(n) × (n+1)

n Determining the Value of
the Factorial Function:
u Use the rule that shows

how to express f(n+1)
2001-03-22 18COSC 2011

Section N

Recursion (Math): (6):

u In terms of f(n) several
times:

n Example of f(4) = 4!

f(4) = 4f(3) = 4 × 3f(2) = 4 × 3 ×
2f(1) = 4 × 3 × 2 × 1 × f(0) = 4
× 3 × 2 × 1 × 1 = 24

u When f(0) is the only
function that occurs, no
more reductions are
necessary.
« Only thing to do is

insert f(0) into formula.

2001-03-22 19COSC 2011
Section N

Recursion (Math): (7):

n Example: Fibonacci
Numbers f0, f1, f2, … fn are
defined as follows:

f0 = 0,

f1 = 1 and

fn = fn-1 + fn-2 n = 2,3,4…

u What are f2, f3, f4, f5?

2001-03-22 20COSC 2011
Section N

Recursion (Math): (8):

u Solution to Fibonacci
Numbers for n = 2,3,4,5,6

f2 = f1 + f0 = 1 = 0 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

f6 = f5 + f4 = 5 + 3 = 8

6

2001-03-22 21COSC 2011
Section N

Recursive Methods (1):

n A method is called recursive
if it solves a problem by
reducing it to an instance of
the same problem with
smaller input.

u A Recursive Method calls
itself as a subroutine with.

u Each time it calls itself,
the problem is “reduced”
until we reach a point
where the problem is
small enough to be easily
solved.

2001-03-22 22COSC 2011
Section N

Recursive Methods (2):

n Candidate Problems for
Recursion Have the
Following Characteristics:

u One or more simple cases
of the problem have
simple non-recursive
solution (base cases).

u For other cases there is a
process for substituting
one or more reduced
cases of the problem that
are closer to the base
case.

2001-03-22 23COSC 2011
Section N

Recursive Methods (3):

u Eventually the problem
can be reduced to base
cases only, all of which
are easy to solve!

u Recursive algorithms we
will encounter will
generally be of the form:

If base case reached then
solve it

else
reduce problem using

recursion

2001-03-22 24COSC 2011
Section N

Recursive Methods (4):

n Recursive Factorial:

public static long factorial(long n){

if (n <= 1)

return 1;

else

return n * factorial(n – 1);

}

u Method calls itself
recursively to compute
factorial of n-1.

u When recursive call
terminates, returns (n-1)!

7

2001-03-22 25COSC 2011
Section N

Recursive Methods (5):

u (n-1)! Is then multiplied by n
to compute n!.

u In turn, recursive invocation
calls itself to compute the
factorial of n-2, etc…

u To compute n!, multiply n by
factorial of n-1. But how do
we calculate factorial(n-1)?

« We call the factorial
method with n-1 as an
argument…

2001-03-22 26COSC 2011
Section N

Recursive Methods (6):

n Important Properties Every
Recursive Methods Should
Possess:

u Method must terminate!
« Base case
« Even infinite recursive

method will terminate!

u Always perform the
recursive call on a smaller
input value.
« Reduce the problem at

every recursive call.

2001-03-22 27COSC 2011
Section N

Recursive Methods (7):

n Example: Fibonacci
Numbers

public static long fibonacci(long n){

if (n = = 0)

return 0;

else if (n == 1)

return 1;

else

return fibonacci(n – 1) +
fibonacci(n-2);

}

2001-03-22 28COSC 2011
Section N

Recursion & Induction:

n Notice the Similarity
Between Recursion and
Induction!

u Induction can be used to
prove the correctness of
many recursive formulas
& functions!

n Problem with Recursion:

u Usually require more
computation and space
over an iterative approach

