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Overview

nTrees and Binary Trees

uQuick review of definitions and 
examples

nTree Algorithms

uDepth, Height

nTree and Binary Tree Traversals

uPreorder, postorder, inorder 

nBinary Search Tree
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Trees:  Terminology and 
Basic Properties
n Definitions (continued)

uAncestor: 
Either the node itself or an 

ancestor of the parent of 
the node.

uDescendant: 
A node v is a descendant of 

a node u if u is an 
ancestor of v

uDescendant: 
A node v is a descendant of a 

node u if u is an ancestor of v
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Trees:  Terminology and 
Basic Properties 
(continued)

uSubtree:
The subtree of tree T rooted at 

a node v is the tree consisting 
of all descendants of v in T 
(including v itself).

uOrdered Tree:
A linear ordering defined for 

the children of each node. 
We can identify the children 
as being the first, second, 
third etc.

uNote the Recursive Definitions 
for Ancestor, Descendant and 
Subtree!
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Trees:  Examples
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Trees:  Another Example

n Internal nodes: directories
n External nodes: regular files.

2001-03-27 6COSC 2011
Section N

Trees:  Terminology
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Trees:  Binary Trees (1)

n Binary Tree
uOrdered tree.
uEach node has a maximum of  

two children.

n Definitions:
uProper Binary tree: 

Each node has either zero or 
two children.Every internal 
node has exactly two 
children.

uLeft or Right Child
Each child of a node is labeled 

left or right child.  Left child 
comes before the right child.
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Trees:  Binary Trees (1)

uLeft and Right Subtree

The subtree rooted at a left or 
right child of an internal node 
v.
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Trees:  Binary Trees (2)

n Recursive Definition:
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Tree Algorithms: (1)

n Assumptions:

uAccessor methods root() & 
parent(v) take O(1) time.

uQuery methods isInternal(v) 
isExternal(v) & isRoot(v)
take O(1) time.

uAccessor method  
children(v) takes O(cv) time 
where cv is the number of 
children of v.



4

2001-03-27 13COSC 2011
Section N

Tree Algorithms: (2)

n Assumptions:

uGeneric methods 
swapElements(v, w) & 
repalceElements(v, e) take 
O(1) time.

uGeneric methods elements() 
& positions(v), which return 
Iterators, take O(n) time.

uIterator methods take O(1) 
time.
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Tree Algorithms: (3)

n Depth of a node v in a Tree:

uThe number of ancestors of 
the node excluding v itself.

uRecursive Definition:

«If v is the root, depth = 0.

«Otherwise, depth of v is 
one plus the depth of the 
parent of v.
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Tree Algorithms: (4)

n Recursive Algorithm to 
compute Depth of node v:

uCalls itself recursively on 
the parent of v, and adds 1 
to the return value.

Algorithm depth(T, v):

if T.isRoot(v) then

return 0

else

return 1+depth(T, T.parent(v))
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Tree Algorithms: (5)

n Height of a node v in a Tree:

uRecursive Definition:

«If v is an external node, 
height = 0.

«Otherwise, height of v is 
one plus the max. height 
of a child of v.

uHeight of a tree is the 
height of the root.

uHeight of a tree equals the 
max. depth of an external 
node of the tree.
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Tree Algorithms: (6)

Algorithm height(T):

h = 0

for each v ∈ T.positions() do

if T.isExternal(v) then

h = max(h, depth(T, v))

return h

n Not very efficient!

uWorst case running time is 
O(n2) .
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Tree Algorithms: (7)

n More Efficient Algorithm:
uUses recursive defn. of 

height.
uRunning Time is O(n)

Algorithm height2(T, v):
if T.isExternal(v) then

return 0
else

h = 0
for each w ∈ T.children(v) do

h = max(h, height2(T, w))
return 1 +h 
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Tree Traversals: (1)

n A traversal of a tree T:

uSystematic way of 
accessing or “visiting” all 
nodes of T.

uSpecific action associated 
with “visit” to a node 
depends on the application -
could be anything!

n Different Types of Traversals 
Available:

uDiffer in the way the nodes 
are visited.
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Tree Traversals: (2)

n Preorder Traversal:

uRoot of the tree is visited 
first.

uSubtrees rooted at the root’s 
children are then visited 
recursively.
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Tree Traversals: (3)

n Useful for:

uProducing a linear ordering of 
the nodes of a tree where 
parents must always come 
before children.

n Efficient way to access all the 
nodes of a tree:

uAssume visiting a node takes 
O(1) time.

uAt each node O(1+cv) where cv

is # of children of v.

«Running Time is O(n).
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Tree Traversals: (4)

n Example:
uDocument tree – if external 

nodes are removed,  traversal 
examines Table of Contents.
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Tree Traversals: (5)

n Postorder Traversal:

uOpposite of the preorder 
traversal.

uRecursively traverses the 
subtrees rooted at the 
children of the root first, 
then visits the root.

uWill visit a node v after it 
has visited all other nodes in 
the subtree rooted at v.
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Tree Traversals: (6)

n Useful For:

uSolving problems where we 
wish to compute some 
property for each node v but 
computing that property, 
requires we have already 
computed the property for 
the children of v.
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Tree Traversals: (7)
n Example: File System Tree

uCompute the disk space 
used by a directory.
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Tree Traversals: (8)

n Preorder and Postorder are 
common ways to traverse a 
tree, but other traversals are 
available:

uCan visit all nodes at depth 
d before going to depth d+1.
« Use a queue!

n Don’t necessarily need to use 
recursion!
uPreorder and postorder can 

be done iteratively with a 
stack.
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Binary Tree Properties (1)

n Level:

uSet of all nodes of a tree T 
at the same depth d, as the 
level d of T.
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Binary Tree Properties (2)

uLevel 0 has one node – the 
root, level 1 at most 2 
nodes, level 2 at most 4 
nodes….

«Level d has at most 2d

nodes.

«Maximum number of 
nodes on the levels of a 
binary tree grows 
exponentially as we go 
down the tree.
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Binary Tree Properties (3)

n Let T be a proper (non-empty) 
binary tree with n nodes, let h 
be the height of T, then:

1. Number of external nodes in T is 
at least h+1 and at most 2h.

2. The number of internal nodes in 
T is at least h and at most 2h-1.

3. Total number of nodes in T is at 
least 2h+1 and at most  2h+1 – 1.

4. Height of T is at least log(n+1)-1
and at most (n-1)/2. That is, 
log(n+1) – 1 ≤≤ h ≤≤ (n-1)/2

5. Number of external nodes =   
1+ number of internal nodes.


