
1

2001-03-27 1

COSC 2011 Section N

Tuesday, March 27 2001

Overview

nTrees and Binary Trees

uQuick review of definitions and
examples

nTree Algorithms

uDepth, Height

nTree and Binary Tree Traversals

uPreorder, postorder, inorder

nBinary Search Tree
2001-03-27 2COSC 2011

Section N

Trees: Terminology and
Basic Properties
n Definitions (continued)

uAncestor:
Either the node itself or an

ancestor of the parent of
the node.

uDescendant:
A node v is a descendant of

a node u if u is an
ancestor of v

uDescendant:
A node v is a descendant of a

node u if u is an ancestor of v

2001-03-27 3COSC 2011
Section N

Trees: Terminology and
Basic Properties
(continued)

uSubtree:
The subtree of tree T rooted at

a node v is the tree consisting
of all descendants of v in T
(including v itself).

uOrdered Tree:
A linear ordering defined for

the children of each node.
We can identify the children
as being the first, second,
third etc.

uNote the Recursive Definitions
for Ancestor, Descendant and
Subtree!

2001-03-27 4COSC 2011
Section N

Trees: Examples

2

2001-03-27 5COSC 2011
Section N

Trees: Another Example

n Internal nodes: directories
n External nodes: regular files.

2001-03-27 6COSC 2011
Section N

Trees: Terminology

2001-03-27 7COSC 2011
Section N

2001-03-27 8COSC 2011
Section N

Trees: Binary Trees (1)

n Binary Tree
uOrdered tree.
uEach node has a maximum of

two children.

n Definitions:
uProper Binary tree:

Each node has either zero or
two children.Every internal
node has exactly two
children.

uLeft or Right Child
Each child of a node is labeled

left or right child. Left child
comes before the right child.

3

2001-03-27 9COSC 2011
Section N

Trees: Binary Trees (1)

uLeft and Right Subtree

The subtree rooted at a left or
right child of an internal node
v.

2001-03-27 10COSC 2011
Section N

Trees: Binary Trees (2)

n Recursive Definition:

2001-03-27 11COSC 2011
Section N

2001-03-27 12COSC 2011
Section N

Tree Algorithms: (1)

n Assumptions:

uAccessor methods root() &
parent(v) take O(1) time.

uQuery methods isInternal(v)
isExternal(v) & isRoot(v)
take O(1) time.

uAccessor method
children(v) takes O(cv) time
where cv is the number of
children of v.

4

2001-03-27 13COSC 2011
Section N

Tree Algorithms: (2)

n Assumptions:

uGeneric methods
swapElements(v, w) &
repalceElements(v, e) take
O(1) time.

uGeneric methods elements()
& positions(v), which return
Iterators, take O(n) time.

uIterator methods take O(1)
time.

2001-03-27 14COSC 2011
Section N

Tree Algorithms: (3)

n Depth of a node v in a Tree:

uThe number of ancestors of
the node excluding v itself.

uRecursive Definition:

«If v is the root, depth = 0.

«Otherwise, depth of v is
one plus the depth of the
parent of v.

2001-03-27 15COSC 2011
Section N

Tree Algorithms: (4)

n Recursive Algorithm to
compute Depth of node v:

uCalls itself recursively on
the parent of v, and adds 1
to the return value.

Algorithm depth(T, v):

if T.isRoot(v) then

return 0

else

return 1+depth(T, T.parent(v))

2001-03-27 16COSC 2011
Section N

Tree Algorithms: (5)

n Height of a node v in a Tree:

uRecursive Definition:

«If v is an external node,
height = 0.
«Otherwise, height of v is
one plus the max. height
of a child of v.

uHeight of a tree is the
height of the root.

uHeight of a tree equals the
max. depth of an external
node of the tree.

5

2001-03-27 17COSC 2011
Section N

Tree Algorithms: (6)

Algorithm height(T):

h = 0

for each v ∈ T.positions() do

if T.isExternal(v) then

h = max(h, depth(T, v))

return h

n Not very efficient!

uWorst case running time is
O(n2) .

2001-03-27 18COSC 2011
Section N

Tree Algorithms: (7)

n More Efficient Algorithm:
uUses recursive defn. of

height.
uRunning Time is O(n)

Algorithm height2(T, v):
if T.isExternal(v) then

return 0
else

h = 0
for each w ∈ T.children(v) do

h = max(h, height2(T, w))
return 1 +h

2001-03-27 19COSC 2011
Section N

Tree Traversals: (1)

n A traversal of a tree T:

uSystematic way of
accessing or “visiting” all
nodes of T.

uSpecific action associated
with “visit” to a node
depends on the application -
could be anything!

n Different Types of Traversals
Available:

uDiffer in the way the nodes
are visited.

2001-03-27 20COSC 2011
Section N

Tree Traversals: (2)

n Preorder Traversal:

uRoot of the tree is visited
first.

uSubtrees rooted at the root’s
children are then visited
recursively.

6

2001-03-27 21COSC 2011
Section N

Tree Traversals: (3)

n Useful for:

uProducing a linear ordering of
the nodes of a tree where
parents must always come
before children.

n Efficient way to access all the
nodes of a tree:

uAssume visiting a node takes
O(1) time.

uAt each node O(1+cv) where cv

is # of children of v.

«Running Time is O(n).

2001-03-27 22COSC 2011
Section N

Tree Traversals: (4)

n Example:
uDocument tree – if external

nodes are removed, traversal
examines Table of Contents.

2001-03-27 23COSC 2011
Section N

Tree Traversals: (5)

n Postorder Traversal:

uOpposite of the preorder
traversal.

uRecursively traverses the
subtrees rooted at the
children of the root first,
then visits the root.

uWill visit a node v after it
has visited all other nodes in
the subtree rooted at v.

2001-03-27 24COSC 2011
Section N

Tree Traversals: (6)

n Useful For:

uSolving problems where we
wish to compute some
property for each node v but
computing that property,
requires we have already
computed the property for
the children of v.

7

2001-03-27 25COSC 2011
Section N

Tree Traversals: (7)
n Example: File System Tree

uCompute the disk space
used by a directory.

2001-03-27 26COSC 2011
Section N

Tree Traversals: (8)

n Preorder and Postorder are
common ways to traverse a
tree, but other traversals are
available:

uCan visit all nodes at depth
d before going to depth d+1.
« Use a queue!

n Don’t necessarily need to use
recursion!
uPreorder and postorder can

be done iteratively with a
stack.

2001-03-27 27COSC 2011
Section N

Binary Tree Properties (1)

n Level:

uSet of all nodes of a tree T
at the same depth d, as the
level d of T.

2001-03-27 28COSC 2011
Section N

Binary Tree Properties (2)

uLevel 0 has one node – the
root, level 1 at most 2
nodes, level 2 at most 4
nodes….

«Level d has at most 2d

nodes.

«Maximum number of
nodes on the levels of a
binary tree grows
exponentially as we go
down the tree.

8

2001-03-27 29COSC 2011
Section N

Binary Tree Properties (3)

n Let T be a proper (non-empty)
binary tree with n nodes, let h
be the height of T, then:

1. Number of external nodes in T is
at least h+1 and at most 2h.

2. The number of internal nodes in
T is at least h and at most 2h-1.

3. Total number of nodes in T is at
least 2h+1 and at most 2h+1 – 1.

4. Height of T is at least log(n+1)-1
and at most (n-1)/2. That is,
log(n+1) – 1 ≤≤ h ≤≤ (n-1)/2

5. Number of external nodes =
1+ number of internal nodes.

