COSC 2011 Section N

Tuesday, March 27 2001

Overview

mTrees and Binary Trees

+Quick review of definitions and
examples

mTree Algorithms
o Depth, Height

mTree and Binary Tree Traversals
< Preorder, postorder, inorder

mBinary Search Tree

Trees: Terminology and
Basic Properties

= Definitions (continued)

eAncestor:
Either the node itself or an

ancestor of the parent of
the node.

o Descendant:
A nodev is a descendant of
anodeuifuisan
ancestor of v

¢ Descendant:

A nodevV is adescendant of a
node u if uis an ancestor of v

2001-03-27 COSC 2011
Section N

Trees: Terminology and
Basic Properties
(continued)

¢ Subtree:

The subtree of tree T rooted at
anode v isthe tree consisting
of all descendantsof vinT
(including v itself).

¢Ordered Tree

A linear ordering defined for
the children of each node.
We can identify the children
as being the first, second,
third etc.

¢ Note the Recursive Definitions
for Ancestor, Descendant and
Subtree!

2001-03-27 COSC 2011
Section N

Trees: Examples

- organization structure of 8 corporation

- table of conlenis of a ook

e

e

o
Inn-m rein |lm|lﬂnr.||'r||lw:|;r.lm\q| Iulmlt:ndl
e |

2001-03-27 COSC 2011
Section N

Trees: Another Example

* Uiz or DOSWindows file system

m [nternal nodes: directories
m External nodes: regular files.

2001-03-27 COSC 2011 5
Section N

Trees: Terminology

= A 08 Uhe roud node.

= B ic the parent of [and E.

» s the sibling of B

= ¥ and K are the children of B

o 0 EF G, e erternal podes, or leaves
= A, B, €. H are infernal nodes

+ The depdh tleved) of £ 152

* The heimli of the e ig 3

= The degree of node Bis 2

Property: (¥ edaes) = (Fmodesy— |
2001-03-27 COSC 2011
Section N

ADTs for Trees

* pencric coilEner mothods
+ simil|, sEmphy(). mlsmants)

+ positional coalainer methods

pemibonal], mwapElammertsip g, replaceElemerip)

» quiry meibods

- ImRioobip), isinlorsl|p). isExerralip)]

* acpessor methnds

ely), paranin), cilkinenip

* wpdale mcthods
application speoitic

([[ESHUE T P R L R TR)

2001-03-27 COSC 2011 7

Section N

Trees: Binary Trees (1)

= Binary Tree
¢ Ordered tree.

+ Each node has a maximum of
two children.

m Definitions:
¢ Proper Binary tree:

Each node has either zero or
two children.Every interna
node has exactly two
children.

oL eft or Right Child

Each child of anode is labeled
left or right child. Left child
comes before the right child.

2001-03-27 COSC 2011
Section N

8

Trees: Binary Trees (1)

oL eft and Right Subtree

The subtree rooted at a left or
right child of an internal node
V.

2001-03-27 COSC 2011 9
Section N

Trees: Binary Trees (2)

m Recursive Definition:

* A binary iree is either
- an external node (leal), or
- an internal node (the roof) and two binary trees
(left subtree and right subfree)

2001-03-27 COSC 2011 10
Section N

ADTs for Binary Trees

* ACCeIs0r oG thids
leRChik (). ngrlChilkd|pd, wibngdps

= kit rethods
esxpandExtemelipl. rem oA bove Extermeiip)

- other applicahen apecific metkods

Treas el

2001-03-27 COSC 2011 11
Section N

Tree Algorithms: (1)

m Assumptions:

e Accessor methods root() &
parent(v) take O(1) time.

+Query methods islnternal (v)
isExternal (v) & isRoot(v)
take O(1) time.

+ Accessor method
children(v) takes O(c,) time
where ¢, is the number of
children of v.

2001-03-27 COSC 2011 12
Section N

Tree Algorithms: (2)

m Assumptions:

¢ Generic methods
swapElements(v, w) &
repal ceElements(v, €) take
O(1) time.

+Generic methods elements()
& positions(v), which return
Iterators, take O(n) time.

o lterator methods take O(1)
time.

2001-03-27 COSC 2011 13
Section N

Tree Algorithms: (3)

m Depth of anodevinaTree

¢ The number of ancestors of
the node excluding v itself.

o Recursive Definition:

*|f vistheroot, depth = 0.

* Otherwise, depth of vis
one plus the depth of the
parent of v.

2001-03-27 COSC 2011 14
Section N

Tree Algorithms: (4)

m Recursive Algorithm to
compute Depth of node v:

oCalsitsaf recursively on
the parent of v, and adds 1
to the return value.

Algorithm depth(T, v):
if T.isRoot(v) then
return O
else
return 1+depth(T, T.parent(v))

2001-03-27 COSC 2011 15
Section N

Tree Algorithms: (5)

m Height of anode v inaTree
e Recursive Definition:

*|f v isan external node,
height = 0.

*Otherwise, height of vis
one plus the max. height
of achild of v.

eHeight of atreeisthe
height of the root.

eHeight of atree equalsthe
max. depth of an externa
node of the tree.

2001-03-27 COSC 2011 16
Section N

Tree Algorithms: (6)

Algorithm height(T):
h=0
for eachv1 T.positions() do
if T.isExternal(v) then
h = max(h, depth(T, v))
return h

= Not very efficient!

eWorst case running time is
o(r?) .

2001-03-27 COSC 2011 17
Section N

Tree Algorithms: (7)

m More Efficient Algorithm:
eUsesrecursive defn. of
height.
eRunning Timeis O(n)

Algorithm height2(T, v):
if T.isExternal(v) then
return 0
else
h=0
for eachw 1 T.children(v) do
h = max(h, height2(T, w))
return 1 +h

2001-03-27 COSC 2011 18
Section N

Tree Traversals: (1)

m A traversal of atreeT:

¢ Systematic way of
accessing or “visiting” all
nodes of T.

+ Specific action associated
with “visit” to a node
depends on the application -
could be anything!

m Different Types of Traversals
Available:

o Differ in the way the nodes
are visited.

2001-03-27 COSC 2011 19
Section N

Tree Traversals: (2)

m Preorder Traversal:

¢ Root of thetreeisvisited
first.

& Subtrees rooted at the root’s
children are then visited
recursively.

= preorder traversal
Algorithm praOrder(v)
“vigit" node v
for each child w of v do
recursively perform preOrder(w)

» reading a document from beginning to end

2001-03-27 COSC 2011 20
Section N

Tree Traversals: (3)

m Useful for:

< Producing alinear ordering of
the nodes of atree where
parents must always come
before children.

m Efficient way to access all the
nodes of atree:

+ Assume visiting a node takes
O(1) time.
+ At each node O(1+c,) wherec,
is# of children of v.
*»Running Time is O(n).

2001-03-27 COSC 2011 21
Section N

Tree Traversals: (4)

m Example:

o Document tree — if externd
nodes are removed, traversal
examines Table of Contents.

= reaxling a docament from beginning 3o end

2001-03-27 COSC 2011 22
Section N

Tree Traversals: (5)

m Postorder Traversal:

+Opposite of the preorder
traversal.

o Recursively traverses the
subtrees rooted at the
children of the root first,
then visits the root.

oWill visit anode v after it
has visited all other nodes in
the subtree rooted at v.

2001-03-27 COSC 2011 23
Section N

Tree Traversals: (6)
+» postorder traversal

Algorithm postOrder{v)
for each child w of v do
recursively perform postOrder(w)
“visit” node v

m Useful For:

+ Solving problems where we
wish to compute some
property for each node v but
computing that property,
requires we have already
computed the property for
the children of v.

2001-03-27 COSC 2011 24
Section N

Tree Traversals: (7)
m Example: File System Tree

o Compute the disk space
used by adirectory.

* ol (dizi usage) command i Unix

2001-03-27 COSC 2011 25
Section N

Tree Traversals: (8)

m Preorder and Postorder are
common ways to traverse a
tree, but other traversals are
avalable:

+Can visit al nodes at depth
d before going to depth d+1.

*» Use a queue!

m Don't necessarily need to use
recursion!

¢ Preorder and postorder can

be done iteratively with a
stack.

2001-03-27 COSC 2011 26
Section N

Binary Tree Properties (1)
m Level:

¢Set of adl nodesof atree T
at the same depth d, asthe
level dof T.

2001-03-27 COSC 2011 27
Section N

Binary Tree Properties (2)

¢ Leve 0 has one node — the
root, level 1 at most 2
nodes, level 2 a most 4
nodes....

*xLevel d has a most ¢
nodes.

* Maximum number of
nodes on the levels of a
binary tree grows
exponentially as we go
down the tree.

2001-03-27 COSC 2011 28
Section N

Binary Tree Properties (3)

m Let T beaproper (non-empty)
binary tree with n nodes, let h
be the height of T, then:

1

2001-03-27

Number of external nodesinT is
at least h+1 and at most 2".

The number of internal nodesin
Tisat least h and at most 2"-1.

Total number of nodesin T isat
least 2h+1 and at most 2h*1 —1.

Height of T isat least log(n+1)-1
and at most (n-1)/2. That is,
log(n+1) —1£ h£ (n-1)/2
Number of external nodes=
1+ number of internal nodes.

COSC 2011 29
Section N

