COSC 2011 Section N

Thursday, March 29 2001

Overview

m Binary Tree traversals
o Preorder, postorder, inorder

m Binary Tree Data Structures
eVector, Linked List

m Genera Tree Data Structures

m Converting General Treesto
Binary Trees

2001-03-29

Binary Tree Traversals: (1)

m Preorder Traversa :

¢ Sinceabhinary treeisaso
“regular tree”, can use
preorder traversal for
general trees. However
we can simplify it!

Algorithm binaryPreorder(T, v)
perform visit action on nodev
if visaninternal node then
binaryPreorder(T, T.leftChild(V))
binaryPreorder(T, T.rightChild(v))

2001-03-29

Binary Tree Traversals: (2)

m Postorder Traversa :

¢ Canalso smplify the
postorder traversal for
binary trees.

Algorithm binaryPostorder(T, v)
if visaninternal node then
binaryPostorder(T, T.leftChild(v))
binaryPostorder(T,T.rightChild(v))
perform visit action on nodev

¢ Can be used to solve the
expression evaluation
problem.

2001-03-29

Binary Tree Traversals: (3)

= specialization of a posforder ireversal
Algorithm awnluma Expressioniy]
if v is am exitcrmal node
return the varmble stoned ac v
bt
let o be the operator stored at v
% +— ovaiuaie Exprossion(leHCHild(v))

¥ v gyaiaie Expmssion{ightChiidiv| |
refurm oy

2001-03-29

Binary Tree Traversals: (4)

m |norder Traversa :

¢ Visit anode between the
recursive traversals of its
left and right subtrees.

Algorithm inorder(T, v)
if visan internal node then
inorder(T, T.leftChild(v))
perform “visit” for node v
if visan internal node then
inorder(T, T.rightChild(v))

2001-03-29 5

Binary Tree Traversals: (5)

¢ Vistthenodesof T “from
left to right”.

¢ Vidgtsyvafter al nodesin
its left subtree and before
the nodes of itsright
subtree.

¢ Many Applications:

* |norder traversal of a
binary search tree
visits the elements ina
non-decreasing order.

* Tree Drawing

2001-03-29 6

Binary Tree Traversals: (6)

m Example: Printing an
Arithmetic Expression
- specialization of an inorder traversal

- print *(* before traversing the left subtree
- print *)y" after traversing the right subtree

(@ = (L +(4 +6M) +2+8))x35)+
(4 = (7 + 2

2001-03-29 7

Binary Search Tree: (1)
m Definition:

¢ Eachinterna node v
stores an e ement e such
that:

* Elements stored in the
left subtree of v are less
than or equal to e.

*» Elements stored in the
right subtree of v are
greater than or equal to
e.

2001-03-29 8

Binary Tree Data
Structures: (1)

m Vector Based | mplementation:

e Level Ordering: For every node
v of T, let p(v) be the integer
defined as follows:

*|f vistheroot, p(v) = 1.

*|f visleft child of node u,
p(v) = 2p(u).

*|f visright child of node u,
p(v) = 2p(u) +1

»Numbers the nodes of each
level of T inincreasing order
from left to right (but may
skip some nodes!)

2001-03-29 9

Binary Tree Data
Structures: (2)

e Representation of binary
tree T using a vector Such
that nodevof T is
associated with element of S
at rank p(v).

+Simple and efficient
implementation.

* Perform the methods
root, parent, leftChild,
rightChild, sibling,
isinternal, isExternal and
iIsRoot using simple math
on the numbers p(v).

2001-03-29 10

Binary Tree Data
Structures: (4)
oL et n be number of nodes of
T, py max. value of p(v)
over al nodes of T.
xVectorszeN=p, +1

*No element at rank O!

+Vector method is fast and
easy representation but can
be very space inefficient if
the height of the tree is
large!

2001-03-29 11

Binary Tree Data
Structures: (5)

m Representation of a Binary
tree T with aVector S.

2001-03-29 12

Binary Tree Data

Structures: (6)

= Running Times of the
Methods of aBinary Tree
Implemented with a Vector:

Operation Time
positions, elements O(n)

swapElements, 0(1)

replaceElements

root, parent, children 01

leftChild, rightChild, sibling O(1)
isInternal, isExternal, isRoot O(1)

2001-03-29

13

Binary Tree Data
Structures: (7)

m Linked Structure for Binary
Trees:

¢ Represent each node v of
tree T by an object with
reference to:

* Element stored at v.

* Position objects
associated with the
children and parent of v.

2001-03-29 14

Binary Tree Data
Structures: (8)

m Node Used in the Binary tree
Linked List Implementation:

To Parent

T

Right Child %’ 0}— Left Child

l

Element

Node for a Binary Tree Linked List

2001-03-29

15

Binary Tree Data
Structures: (9)

elf vistheroot of T,
reference to parent is null.

¢lf visan externa nodeof T,
references to children are
null.

* TO save space, when
external nodes are empty,
can have references to
external nodes be null.

*Can use a specia object,
NULL_NODE & every
external node reference is
instead to this object.

2001-03-29 16

Binary Tree Data
Structures: (10)

eUsing the NULL_NODE we
have to be prepared to throw
an exception if the parent
method is passed such an
object as an argument.

2001-03-29 17

Binary Tree Data
Structures: (11)

m Example of a Linked Data
Structure for aBinary Tree:

-

gixi\ ‘Q
M’{ 1%
w

2001-03-29 18

-,

s
- |

e

General Tree Data

Structures: (1)

m Linked Structure for General
Trees:

+Can extend the linked
structure for binary trees to
represent general trees.

+No limit to the number of
children a node can have,
use a container (e.g. list,
vector) to store the children
of node v instead of using
instance variables.

2001-03-29 19

General Tree Data
Structures: (2)

m Linked Structure for General
Trees:

@OQG\J

LY

SHe

prseoe] Chw\h \se

Linked Structure for a General Tree

2001-03-29 20

General Tree Data
Structures: (3)
+Can implement method
children(v) by simply
calling elements() method
of the container.

Operation Time
Size, isEmpty o)

Positions, elements O(n)

swapElements, 0(1)

replaceElements

Root, parent o)

isinternal, isExternal, isRoot O(1)

Children(v) o(c,)

2001-03-29 21

Converting a General Tree
to a Binary Tree: (1)

m Representing General Trees
with Binary Trees. Transform
T into Binary Tree T' as
follows:

o For each node u of T, there
isan internal node u’ of T’
associated with u.

o¢If uisan externa nodeof T
and doesn’t have asibling
immediately following it,
then thechildren u’ of T’
are external nodes.

2001-03-29 22

Converting a General Tree
to a Binary Tree (2)
elf uisaninterna nodeof T
and v isthefirst child of u
InT, then v’ isthe left child
of uinT.

+|f node v hasasibling w
immediately following it,
then w' istheright child of
VinT,

m Externa nodes of T' are not
associated with nodes T and
serve only as placeholders.

2001-03-29 23

Converting a General Tree
to a Binary Tree: (3)

m Can be seen as a conversion of
Tinto T’ that takes each set of
siblings{vy, Vo, ..., v} InT
with parent v and replaces it
with a chain of right children
rooted at v;, which then
becomes the left child of v.

2001-03-29 24

Converting a General Tree
to a Binary Tree: (4)

m Example of the Conversion from a
General Treeto aBinary Tree:

2001-03-29 25

Priority Queue: (1)

m What is a Priority Queue?

¢An Abstract Data storing a
collection of prioritized
elements.

< Supports arbitrary element
insertion but supports
removal of elementsin
order of priority.

* The element with the
highest priority can be
removed at any time.

2001-03-29 26

Priority Queue: (2)

oA priority queue stores
elements in order of priority
only!
*»No notion of position as
with some other ADTs
(sequences, lists etc.)

m Priority Queue ADT:

o Each element in the priority
gueue has a corresponding
“key” Object.

*»Key Object represents the
elements priority.

2001-03-29 27

Priority Queue: (3)
m “Key” Object - Definition:

+An Object assigned to some
element which can be used
to rank, identify or weight
the element.

¢Assigned to the element by
the user or the application.

+Maybe changed by the
application if needed.

2001-03-29 28

Priority Queue: (4)

+Does not need to be asingle
numerical value.

* Can sometimes be more
complex and cannot be
guantified by asingle
number.

2001-03-29 29

Priority Queue: (4)

m [n apriority queue, the key is
used to assign a priority to
each element:

= A Prionty Cueue ranks ifs elemenis by Rey with a
total order relation

* By
- Every element has s own key
- Bueys arc ol necessanily unique

» Todal Order Relation
- Denoded by <
- Refllexive: k< k
- Antisymetric: if ky < b and by < &, then £y <k,
= Transitive: |f#| = Ju':u el lu'a_-,! < 'E.'I' Ih::ll.h = k.’l

2001-03-29 30

Priority Queue: (5)
Sorting with a Priority Queue

= A Pnority Cueie P ean be used for sorting a
seqiaetce § hy:
- ingeriing the clements of § inte P with a series of
inzerifien| e, ¢) operalions
- memwing the ebements from P om inereasing order
aiuk juiting themm back e 8 with a series of
rerncvaldin | OpETahons

Aldgorithon Prodry QueusSen (s, My
i A seqience § soring welemens, on which
il order relation s diefmed, anid @ Prioday Queie
P that compares kevs with the some relation
inipt The Sﬁ|||¢||u: a s.l:lrl.:li'l'-:.' the ol erder
melution

while 15 sEmgty) do
& i— 5 rembveFirei()
Pinaariinme, &)

while I is notempry o
= Premovehing)
ainsarilastieh

2001-03-29 31

Priority Queue: (6)
The Priority Queue ADT

» A prioriy queue P supperts the following methods:

size():

Return the number of elements in P
isEmpty():
Test whether P is empty
- insertltemik.e):
Insert a new element e with key k into P
minElement():
Return (but don’t remove) an element of
P with smallest key; an error occurs if P
is emplty.
minKey():
Return the smallest key in P; an error
occurs if P is empty
removeMin():
Remove from P and return an element
with the smallest key; an error
condidtion oceurs if P is empty.

2001-03-29 32

