COSC 2011 Section N

Tuesday, April 32001

Overview
» Priority Queues

+Quick Review of definitions
+Quick Review of ADT
+Compositions & Comparators
«Ilmplementation

*Sequence

sMid-term Test Questions

2001-04-03 1

Priority Queues:
Compositions (1)

» Composition Objects:

+A single object ethat isa
composition of two (or
more) other objects.

+ Each element in the priority
queue is essentially apair:
xEach element has a key

+ Can create a composition of
each key and element:

2001-04-03 COSC 2011
Section N

Priority Queues:
Compositions (2)

= I[mplementing the
Composition Concept:

oDefine the Item class:

public class Item{
private Object key, elem;
public Item(Object k, Object e}{
key = k;
elem=¢
}
public Object key(){ return key;}
public Object element(){ return element;}
public void setKey(Object k){ key = k;}
public void setElem(Object e){elem = g}
}

2001-04-03 COsC 2011 3

Section N

Priority Queues:
Comparators (1)

» How do we Compare keys?

+Keys are Objects so they
may be different types!

e Use different priority queue
for each key type and each
possible way of comparing
keys of such types.

=Different priority queue
for integer keys, strings...

xNot very generd.

» T00 much similar code!

2001-04-03 COSC 2011
Section N

Priority Queues:
Comparators (2)

» Alternative Strategy:

+Requires keysto be ableto
compare themselves to one
another.

+Have agenera priority
gueue class that stores
instances of akey class that
implements a Comparable
interface.

= Encapsulates al the usua
comparison methods.

2001-04-03 COSC 2011
Section N

Priority Queues:
Comparators (3)

= Problem with the Comparable:

+May be cases where we are
asking “too much” of the

keys.
xKeys may not know how
to be compared!

x4 £ 11 using integer keys.
»11 £ 4 using String keys.

Do not rely on keysto
provide comparison rules!

2001-04-03 COSC 2011
Section N

Priority Queues:
Comparators (4)
+Use comparator objects:
»External to the keys
*Supply comparison rules.

»Given to the priority
gueue during construction

»Can be changed if
necessary.

+When the priority queue
needs to compare keys, it
uses the comparator object.

2001-04-03 COSC 2011
Section N

Priority Queues:
Comparators (5)

» Comparator ADT Methods:

* The comparator ADT includes:
- isLessThan{a, b)
- isLessThanOrEqual To{a.b)
- isEqualTo{a, b}
- 1sGreater Thania.b)
- 1sGreater ThanOrEqual To(a, b)
- isComparable{a)

2001-04-03 COSC 2011 8
Section N

Priority Queues: Sequence
Implementation (6)

Implementation with an
Unsorted Sequence

« Let's try to implement a priority quene with an
unsorted sequence §.

= The elements of § are a composition of two
elements, k, the key, and e, the element.

* We can implement insertltern() by using insertLast()
on the sequence. This takes Q(1) time.

OO

* However, because we always insert at the end,
irrespectively of the key value, our sequence is not
ordered.

2001-04-03 COSC 2011 9
Section N

Priority Queues: Sequence
Implementation (7)

Implementation with an
Unsorted Sequence (contd.)

* Thus, for methods such as minElement(), minKey(),
and removeMin(), we need to look at all the
elements of 5. The worst case time complexity for
these methods is O(r).

+ Performance summary

. inseriltem (1)
| minKey, minElement On)
| removeMin On)
2001-04-03 cosCc 2011 10
Section N

Priority Queues: Sequence
Implementation (8)

Implementation with a Sorted
Sequence

= Anather impdemei i USes @ segueies T, soried
Ty incressing keye

= minElernenl(), minEey(), and removehding) take
LKLY time

Q-G Ca(8)

+ However, (o0 implement insertliemd 1. we muel now
scan throagh the entite sequence in the worsd coaxe
Thus. e} runs m € lime

T W W ST T meT W,

* Performanes surmmary

[inseriliem | iim)
| .mn!m.ﬁ'z_p, mitnFlement 1
| !
| e Min [LEN]
2001-04-03 COSC 2011 11

Section N

Priority Queues: Sorting (1)
Selection Sort

» Selection Soet iz a varistion of Prioriiy(ueneSon
that nses an wusorted segrence o implement the
[Ty e #

= Phase 1, \he bisserion of an tem inta P rakes 01
tlme

= Phase 1, removing an lemn from ™ lakes time
nmpl:rrlmnal i the corment nusmber of elements i P

[Sequences | Prionity GQuewe £ |

Hpui El:?.'l. B L5109 L
T 4 i e A 2

{ai| (4.8 253" M

[LEFY B ¢ B e 8 {7, 43

i o |{7.8.8.2,5.3.9
Phase 22

(a) (25 (7,48 630

(b {33 (4557

] Z,314)

() 2345

feh 234,57

W (234,578

40 T B

2001-04-03 COSC 2011 12
Section N

Priority Queues: Sorting (2)
Selection Sort (cont.)

= As you can tell, a bottleneck occurs in Phase 2. The
first removeMinElement operation take O(i), the
second Q(rn—1). ete. until the last removal takes only
O(1) time.

* The total time needed for phase 2 is:

On+(n—1)+...+2+ I}EO[

=

y

i
* By a well-known fact:

2
i=1

+ The total time complexity of phase 2 is then 0(:;2;2
Thus. the time complexity of the algorithm is Q(n").

2001-04-03 COSC 2011 13
Section N

Priority Queues: Sorting (3)

Insertion Sort

= Inzertion art i3 the sor that resuls when we
petforin & Priod iy QueneSort isplemeitiig the
priority qucus with a sovied sequence.

Sequence § Pricrity Chaeue P

[njnat (748 L5 L9 {]
Plgse 1:

(i (4.8 25349 {7

M) (82559 (4,7)

e 2.539 (4, 7. B

-:nhl (53,9 (2 4,7.8)

el %} (L4578

HJI L] (L3 4578

W 0 | BaesIee
Plesze 2- |

(| {2 (3, 4.5 7,88

'i11]i (rm 5 T8 W

@ 2345789 0

2001-04-03 COSC 2011 14
Section N

Priority Queues: Sorting (4)

Insertion Sort(cont.)
» We improve phase 2 to O(#).

» However, phase | now becomes the bottleneck for
the running time. The first insertitem takes O(1) time.
the second one (2), until the last opertation takes
O(n) time, for a total of O(nz) time

+ Selection-sort and insertion-sort both take O(nz)
lime

+ Selection-sort will always executs a number of

operations proportional to #7, no matter what is the
input sequence.

* The running time of insertion sort varies depending
on the input sequence.

» Neither is a good sorting method, except for small
sequences

* We have yel to see the ultimate priority queue....

2001-04-03 COSC 2011 15
Section N

Priority Queues: Sorting (5)

= By now, you've seen a little bit of sorting, so let us
tell you a little more about it.

» Sorting is essential because efficient searching in a
database can be performed only if the records are
sorted

« It is estimated that about 20% of all the computing
time worldwide is devoled lo sorting

» We shall see that there is a trade-off between the
“simplicity” and efficiency of sorting algorithms:

* The elementary sorting algorithms you've just seen,
though easy to understand and implement, take
Ofi”) time (unusable for large values of n)

= more sophisticated algorithms take Qfnlogn) time

¢ Comparison of Keys: do we base comparison upon
the entire key or upon paris of the key?

= Space Efficiency: in-place sorting vs. use af
auxiliary structures

e Stability: a stable sorting algorithm preserves the
initial relative order of equal keys

2001-04-03 COSC 2011 16
Section N

