COSC 2011 Section N

Tuesday, April 10 2001

Overview

= Heaps
oDefinitions
oProperties
elnsertion / Deletion
ol mplementation
x\/ ector
e Heap Sort

mDictionaries

Heaps

e A heapis a binary tred that stores a collection of
keys (or key-element pairs) at its internal nodes ani
that satisfies two additional properties:
- Order Property:key(parentk key(child)

- Structural Property all levels are full, except the
last one, which is left-filledcomplete binary tree

Heaps | 6.2

Not Heaps

e pottom level is not left-filled

O
(5,

(15 (9 (7
19 @ @ @ W
« key(parent)> key(child)

(&
(9
(15 (5) (7

(20

Heaps |

6.3

Height of a Heap

A heapT storingn keys has height = og(n + 1))
which is O(logn)

en>1+2+4+. +%24+1=2"1_1+1 =91

en<l+2+4+.. +91=0"_1
0 (9

(5) (6)
h-2 (15) (9) (7 (20
h-1 W ® W 0 e 6@ @

h 0000000 000Oo0aoac
e Therefore ¥1<n<2h-1
e Taking logs, we getlogh(+ 1)<h<logn+1
 Which impliesh = og(n+1)L]

Heaps |

6.4

Heap Insertion

So here we go ...

The key to insert i6

(23 (19 (20
29 (9 1 Y@

L1 L 1000 O O Odogo

Heaps |

6.5

Heap Insertion

Add the key in thenext available positionn the

heap.

@ 19 (9

2 (291 @@ () UEC

10 00O 0O O0OOOg O

Now beginUpheap

Heaps |

6.6

Upheap

o Swap parent-child keys out of order

0 @ (8
2 @8 BB Ko

O oo d oo O oL

21 10 () (8
22 (28 (13 @ 20 O C

et e O O e I A I

Heaps |

6.7

Upheap Continues

21 10 (6
22 (2813 (1925 @ O C

L] [Eﬂ OOt e

6.8

End of Upheap

N O)

22 (2813 (1929 (9 OO
1Y dudy dodn de

 Upheapterminates when new key is greater
than the key of its pareitr the top of the heap
IS reached

o (total #swapp < (h— 1), which is O(logn)

Heaps | 6.9

Removal From a Heap
RemoveMin()

3
\
(O

2 (2 © (Y(@

 The removal of the top key leaves a hole
* WWe need to fix the heap

 First, replace the hole with the last key In
the heap

* Then, begirDownheap

Heaps | 6.10

Downheap

Downheapcompares the parent with the smallest
child. If the child is smaller, it switches the two.

Heaps |

6.11

Downheap Continues

6.12

Downheap Continues

@@ 195 0 0O C

O Do o ot

% B@ @95 L O o

OO OO HiEINE

Heaps | 6.13

End of Downheap

4
10 6

2 13 7 8

2 28) (20 19) (2 L

 Downheapterminates when the key is greater
than the keys of both its childrear the bottom
of the heap is reached.

e (total #swapp < (h— 1), which is O(logn)

Heaps | 6.14

Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;

-
(= (S
heap last

- J

Heaps Il 6.2

Implementation of a Heap(cont.)

e Two ways to find the insertion position z in a heap:

Go ©» @ @D
@GOG @D [

A4

Heaps Il 6.3

Vector Based Implementation

o Updates in the underlying tree occur only at the “last
element”

* A heap can be represented by a vector, where the
node at rank has

- left child at rank 2and
- right child at rank R+ 1

 The leaves do no need to be explicitly stored

 Insertion and removals into/from the heap
correspond tasertLast andremoveLast on the
vector, respectively

Heaps Il 6.4

Heap Sort

 All heap methods run in logarithmic time or better

e If we implement PriorityQueueSort using a heap for
our priority queueinsertitem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

« We always have at mostelements in the heap, so
the worst case time complexity of these methods|is
O(logn).

* Thus each phase takesxdqgg n) time, so the
algorithm runs in Qflog n) time also.

e This sort is known alseap-sort

« TheO(nlog n) run timeof heap-sort is much better
than the Of%) run time of selection and insertion
sort.

In-Place Heap-Sort

Do not use an external heap

 Embed the heap into the sequence, using the vectc
representation

Heaps Il 6.5

The Dictionary ADT

« a dictionary is an abstract model of a database

e like a priority queue, a dictionary stores key-element
pairs

» the main operation supported by a dictionary is
searching by key

simple container methods:
- size()

- isEmpty()

- elements()

guery methods:
- findElement(Kk)
- findAllElements(K)

update methods:

- insertitem(k, €)

- removeElement(K)

- removeAllElements(K)

special element

- NO_SUCH_KEY, returned by an unsuccessful
search

Searching 2

Implementing a Dictionary with
a Sequence

e unordered seguence

- searching and removing takesnP(ime

- Inserting takes O(1) time

- applications to log files (frequent insertions, rare
searches and removals)

| =4

e array-based ordered seqguen@ssumes keys can be
ordered)

- searching takes O(lag) time (inary search
- Inserting and removing takes@)time

- application to look-up tables (frequent searches,
rare insertions and removals)

Searching 3

