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Heaps

e A heapis a binary tred that stores a collection of
keys (or key-element pairs) at its internal nodes ani
that satisfies two additional properties:
- Order Property:key(parentk key(child)

- Structural Property all levels are full, except the
last one, which is left-filledcomplete binary tree
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Not Heaps

e pottom level is not left-filled
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Height of a Heap

A heapT storingn keys has height = og(n + 1))
which is O(logn)
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e Therefore ¥1<n<2h-1
e Taking logs, we getlogh(+ 1)<h<logn+1
 Which impliesh = og(n+1)L]
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Heap Insertion

So here we go ...

The key to insert i6
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Heap Insertion

Add the key in thenext available positionn the

heap.
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Now beginUpheap
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Upheap

o Swap parent-child keys out of order
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Upheap Continues
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End of Upheap
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 Upheapterminates when new key is greater
than the key of its pareitr the top of the heap
IS reached

o (total #swapp < (h— 1), which is O(logn)
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Removal From a Heap
RemoveMin()
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 The removal of the top key leaves a hole
* WWe need to fix the heap

 First, replace the hole with the last key In
the heap

* Then, begirDownheap
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Downheap

Downheapcompares the parent with the smallest
child. If the child is smaller, it switches the two.
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Downheap Continues
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Downheap Continues
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End of Downheap
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 Downheapterminates when the key is greater
than the keys of both its childrear the bottom
of the heap is reached.

e (total #swapp < (h— 1), which is O(logn)
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Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;
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Implementation of a Heap(cont.)

e Two ways to find the insertion position z in a heap:

Go  ©» @ @D
@GOG @D [

A4

Heaps Il 6.3



Vector Based Implementation

o Updates in the underlying tree occur only at the “last
element”

* A heap can be represented by a vector, where the
node at rank has

- left child at rank 2and
- right child at rank R+ 1

 The leaves do no need to be explicitly stored

 Insertion and removals into/from the heap
correspond tasertLast andremoveLast on the
vector, respectively
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Heap Sort

 All heap methods run in logarithmic time or better

e If we implement PriorityQueueSort using a heap for
our priority queueinsertitem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

« We always have at mostelements in the heap, so
the worst case time complexity of these methods|is
O(logn).

* Thus each phase takesxdqgg n) time, so the
algorithm runs in Qflog n) time also.

e This sort is known alseap-sort

« TheO(nlog n) run timeof heap-sort is much better
than the Of%) run time of selection and insertion
sort.

In-Place Heap-Sort

Do not use an external heap

 Embed the heap into the sequence, using the vectc
representation
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The Dictionary ADT

« a dictionary is an abstract model of a database

e like a priority queue, a dictionary stores key-element
pairs

» the main operation supported by a dictionary is
searching by key

simple container methods:
- size()

- isEmpty()

- elements()

guery methods:
- findElement(Kk)
- findAllElements(K)

update methods:

- insertitem(k, €)

- removeElement(K)

- removeAllElements(K)

special element

- NO_SUCH_KEY, returned by an unsuccessful
search
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Implementing a Dictionary with
a Sequence

e unordered seguence

- searching and removing takesnP(ime

- Inserting takes O(1) time

- applications to log files (frequent insertions, rare
searches and removals)
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e array-based ordered seqguen@ssumes keys can be
ordered)

- searching takes O(lag) time (inary search
- Inserting and removing takes@)time

- application to look-up tables (frequent searches,
rare insertions and removals)
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