
1

COSC 2011 Section N
Tuesday, April 10 2001

Overview

n Heaps

uDefinitions

uProperties

uInsertion / Deletion

uImplementation

«Vector

uHeap Sort

nDictionaries

6.2Heaps I

Heaps
• A heap is a binary treeT that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property:key(parent)≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)

4

6

207

811

5

9

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.4Heaps I

Height of a Heap
A heapT storingn keys has heighth = log(n + 1),
which is O(logn)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1)≤ h ≤ log n + 1

• Which impliesh = log(n+1)

4

6

207

5

915

16h − 1

0

1

h − 2

h

h − 1

0

1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.5Heaps I

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is6

19

6.6Heaps I

3

74

21 10 20 8

22 28 13 19

Add the key in thenext available positionin the
heap.

Now beginUpheap.

Heap Insertion

25 6

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3

74

21 10 20 8

22 28 13 19 25 6

3

74

21 10 6 8

22 28 13 19 25 20

6.8Heaps I

Upheap Continues

3

74

21 10

20

8

22 28 13 19 25

6

3

64

21 10

20

8

22 28 13 19 25

7

6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parentor the top of the heap
is reached

• (total #swaps) ≤ (h − 1), which is O(logn)

3

7

4

21 10

20

8

22 28 13 19 25

6

End of Upheap

6.10Heaps I

Removal From a Heap

RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole

• We need to fix the heap

• First, replace the hole with the last key in
the heap

• Then, beginDownheap

3

20

6.11Heaps I

Downheap

20

7

4

21 10 8

22 28 13 19 25

6

Downheapcompares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.14Heaps I

End of Downheap

4

7

10

21 13 8

22 28 20 19 25

6

• Downheap terminates when the key is greater
than the keys of both its childrenor the bottom
of the heap is reached.

• (total #swaps) ≤ (h − 1), which is O(logn)

6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at ranki has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond toinsertLast andremoveLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue,insertItem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

• We always have at mostn elements in the heap, so
the worst case time complexity of these methods is
O(logn).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known asheap-sort.

• TheO(n log n) run timeof heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

3Searching

Implementing a Dictionary with
a Sequence

• unordered sequence

- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare

searches and removals)

• array-based ordered sequence(assumes keys can be
ordered)

- searching takes O(logn) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches,

rare insertions and removals)

34 14 12 22 18

12 14 18 22 34

