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6.2Heaps I

Heaps
• A heap is a binary treeT that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property:key(parent)≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)
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6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)
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6.4Heaps I

Height of a Heap
A heapT storingn keys has heighth = log(n + 1),
which is O(logn)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1)≤ h ≤ log n + 1

• Which impliesh = log(n+1)
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6.5Heaps I
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Heap Insertion

So here we go ...

The key to insert is6
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6.6Heaps I
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Add the key in thenext available positionin the
heap.

Now beginUpheap.

Heap Insertion
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6.7Heaps I

Upheap
• Swap parent-child keys out of order
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6.8Heaps I

Upheap Continues
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6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parentor the top of the heap
is reached

• (total #swaps)  ≤  (h − 1), which is O(logn)
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6.10Heaps I

Removal From a Heap

RemoveMin()
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• The removal of the top key leaves a hole

• We need to fix the heap

• First, replace the hole with the last key in
the heap

• Then, beginDownheap

3

20



6.11Heaps I

Downheap
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Downheapcompares the parent with the smallest
child.  If the child is smaller, it switches the two.
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6.12Heaps I

Downheap Continues
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6.13Heaps I

Downheap Continues
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6.14Heaps I

End of Downheap
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• Downheap terminates when the key is greater
than the keys of both its childrenor the bottom
of the heap is reached.

• (total #swaps)  ≤  (h − 1), which is O(logn)



6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}
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6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:
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6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at ranki has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond toinsertLast andremoveLast on the
vector, respectively
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6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue,insertItem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

• We always have at mostn elements in the heap, so
the worst case time complexity of these methods is
O(logn).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known asheap-sort.

• TheO(n log n) run timeof heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation



2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search



3Searching

Implementing a Dictionary with
a Sequence

• unordered sequence

- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare

searches and removals)

• array-based ordered sequence(assumes keys can be
ordered)

- searching takes O(logn) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches,

rare insertions and removals)
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