SEARCHING

* the dictionary ADT
* binary search

* binary search trees

The Dictionary ADT

* a dictionary is an abstract model of a database

* like a priority queue, a dictionary stores key-element
pairs

 the main operation supported by a dictionary is
searching by key

» simple container methods:
- size()

- isEmpty()
- elements()

query methods:
- findElement(K)
- findAllElements(K)

update methods:

- insertitem(k, €)

- removeElement(K)

- removeAllElements(K)

* special element

- NO_SUCH_KEY, returned by an unsuccessful
search

Searching 1

Searching 2

Implementing a Dictionary with
a Sequence

« unordered sequence

- searching and removing takesnp{ime
- inserting takes O(1) time

- applications to log files (frequent insertions, rare

searches and removals)

* array-based ordered sequenassumes keys can bg
ordered)

- searching takes O(lag time (pinary search
- inserting and removing takes1®time

- application to look-up tables (frequent searches
rare insertions and removals)

A

Binary Search
» narrow down the search range in stages
* “high-low” game

* findElement(22)

|2‘4‘ 5‘7‘8‘ 9‘ 1414‘17‘19‘24 25‘ 24 221 3? 3T

T 1? 2F25‘ 27‘ 28‘ 33‘ 37‘

1
I I I

ow mid high

HREHEREE
|

‘2‘4‘ 5‘7‘ 8‘ 9‘ 1% 14’ 17“9‘22'25‘ 27‘ 28‘ 3% 37‘

I

low mid high

‘2‘4‘ 5‘7‘ 8‘ 9‘ 1% 11 17 1?22|25‘27‘ 28‘ 33‘ 37‘

low=mid=high

Searching 3

Searching 4



Pseudocode for Binary Search

Algorithm BinarySearc(S, k, low, high)
if low > highthen
return NO_SUCH_KEY
else
mid — (low+high) / 2
if k = key(mid)then
return key(mid)
else ifk < key(mid)then
return BinarySearc(s, k, low, mid-1)
else
return BinarySearc(s, k, mid-1, high)

|2‘4‘ 5‘7‘3‘ 9‘ 1414‘17‘19‘24 25‘ 24 2% 3% 3T

low mid high

‘2‘4‘ 5‘7‘8‘ 9‘ 14 14* 17 1? 2F25‘27‘28‘33‘ 37‘

low mid high

‘2‘4‘ 5‘7‘8‘ 9‘ 1% 14* 1#19‘22|25‘ 27‘ 28‘ 3% 37‘

low mid high

Running Time of Binary Search

* The range of candidate items to be searched is
halved after each comarison

comparison search range
0 n
1 n/2
2 n/4
2 n/2'
log, n 1

* In the array-based implementation, access by rank

takes O(1) time, thusinary search runs i@®(log n)
time

Searching 5

Searching 6

Binary Search Trees

* A binary search tree is a binary tree T such that
- each internal node stores an item (k, e) of a
dictionary.
- keys stored at nodes in the left subtree of v are lg
than or equal to k.
- keys stored at nodes in the right subtree of v ar¢
greater than or equal to k.

- kxternal nodes do not hold elements but serve &
place holders.

2S¢

D

AS

Search

* A binary search tre€& is adecision treewhere the
guestion asked at an internal nade whether the
search ke s less than, equal to, or greater than th
key stored at.

» Pseudocode:
Algorithm TreeSearchk, v):
Input: A search keyk and a node of a binary search
treeT.
Ouput: A node w of the subtregv) of T rooted av,
such that either w is an internal node storing
keyk or w is the external node encountered i
the inorder traversal Gf(v) after all the inter
nal nodes with keys smaller thieand before
all the internal nodes with keys greater thkan
if vis an external nodien
return v
if k= key{) then
return v
else ifk < key(v) then
return TreeSearcfk, T.leftChild(v))
else

{ k> keyQ) }
return TreeSearcfk, T.rightChild{))

Searching 7

Searching 8

ne



Search Example |

» SuccessfulindElement(76)

Search Example I

» UnsuccessfuindElement(25)

A successful search traverses a path starting at tt
root and ending at an internal node

* How aboutindAllelements(K)?

ne

» An unsuccessful search traverses a path starting
the root and ending at an external node

Searching 9

Searching 10

Insertion

* To performinsertitem(k, €), letw be the node
returned byTreeSearc{k, T.root())

« If wis external, we know thatis not stored inT. We
call expandExternal(w) on T and storek, €) in w

Insertion |l

* If wis internal, we know another item with kieys
stored atv. We call the algorithm recursively
starting afT.rightChild(w) or T.leftChild(w)

Searching 11

Searching 12

at



Removal |

* We locate the node where the key is stored with
algorithmTreeSearch

* |If whas an external childz, we removev andz
with removeAboveExternal(2)

Removal Il

* If whas an no external children
- find the internal nodg following w in inorder
- move the item af intow

- performremoveAboveExternal(x), wherex s the left
child of y (quaranteed to be external)

Searching 13

Time Complexity

* A search, insertion, or removal, visits the nodes
along aroot-to leaf path plus possibly thsiblings
of such nodes

» Time O(1) is spent at each node

* The running time of each operation istQ(whereh
is the height of the tree

» The height of binary serch tree isriin the worst

case, where a binary search tree looks like a sorted

sequence

 To achive good running time, we need to keep the

treebalanced i.e., with O(logn) height

* Various balancing schemes will be explored in the

next lectures

D

Searching 15

Searching 14




