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Overview

n Undirected Graph Traversals

u Depth-First Search

uBreadth-First Search
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Undirected Graph 
Traversal - DFS:

n Definition:

u A graph traversal is a 
systematic procedure for 
visiting all vertices and 
edges of a graph.

u Efficient if it visits all 
vertices and edges in 
linear time.

u Two efficient methods:

« Depth-First Search
« Breadth-First Search 
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Undirected Graph 
Traversal - DFS:

n Depth-First Search (DFS):

u “Search” deeper in the 
graph whenever possible.

u Edges are “explored” out 
of the the most recently 
visited vertex v that still 
has unexplored edges 
leaving it.

u When all of v’s edges 
have been explored, 
search “backtracks” to
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Undirected Graph 
Traversal - DFS:

u explore edges leaving the 
vertex from which v was 
discovered.

u This process continues 
until all vertices reachable 
from the original source 
vertex have been 
discovered.

u If any undiscovered 
vertices remain, one of 
them is selected as a new 
source and search repeats.
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Undirected Graph 
Traversal - DFS:

n Visualize DFS by orienting 
edges along the directions 
they are explored during the 
traversal.

u Discovery or tree Edges:
« Edges used to discover 

new vertices.

u Back Edges:
« Edges leading to 

already visited vertices.
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Undirected Graph 
Traversal - DFS:

u Discovery edges form a 
spanning tree of the 
connected component 
starting at start vertex s.
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Undirected Graph 
Traversal - DFS:

n Algorithm:

n Back edges represent a 
cycle!
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Undirected Graph 
Traversal - DFS:

n Algorithm Assumptions:

u Have a “way” to 
determine whether a 
vertex or edge has been 
explored or not.

u Have a “way” to label 
edges as discovery or 
back edges.

u This may require 
additional storage space 
and may affect running 
time!
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Undirected Graph 
Traversal - DFS:

n Running Time:
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Undirected Graph 
Traversal - DFS:
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Undirected Graph 
Traversal - DFS:
n Let G be a graph with n vertices and 

m edges represented with an 
adjacency list structure.  There exists 
O(n+m) algorithms based on DFS to 
compute:

u Test whether G is connected.

u Compute spanning tree of G if G 
is connected.

u Compute connected components 
of G.

u Compute path between two 
vertices of G or report no path 
such path exists.

u Compute cycle in G or report no 
cycle exists.
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DFS Example: (1)
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DFS Example: (2)
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DFS Example: (3)
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DFS Example: (4)
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DFS Example: (5)
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DFS Example: (6)
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DFS Example: (7)
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DFS Example: (8)
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DFS Example: (9)

2001-05-08 24COSC 2011 
Section N

DFS Example: (10)
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DFS Example: (11)



Breadth-First Search
• Like DFS, aBreadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
defines a spanning tree with several useful properties

- The starting vertexs has level 0, and, as inDFS,
defines that point as an “anchor.”

- In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

- These edges are placed into level 1
- In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

- This continues until every vertex has been
assigned a level.

- The label of any vertexv corresponds to the length
of the shortest path froms to v.



BFS - A Graphical
Representation
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More BFS
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BFS Pseudo-Code

Algorithm BFS(s):
Input : A vertexs in a graph
Output : A labeling of the edges as “discovery” edges

and “cross edges”
initialize container L0 to contain vertexs
i ← 0
while Li is not emptydo

create container Li+1 to initially be empty
for  each vertexv in Li do

for each edgee incident onv do
if edgee is unexploredthen

let w be the other endpoint ofe
if vertexw is unexploredthen
 label eas a discovery edge
 insertw into Li+1
else
 labele as a cross edge

i ← i + 1



Properties of BFS
• Proposition: Let G be an undirected graph on which

a aBFS traversal starting at vertexs has been
performed. Then
- The traversal visits all vertices in the connected

component ofs.
- The discovery-edges form a spanning treeT,

which we call theBFS tree, of the connected
component ofs

- For each vertexv at leveli, the path of theBFStree
T betweens andv hasi edges, and any other path
of G betweens andv has at leasti edges.

- If (u, v) is an edge that is not in theBFS tree, then
the level numbers ofu andv differ by at most one.

• Proposition: Let G be a graph withn vertices andm
edges. ABFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
- Testing whetherG is connected.
- Computing a spanning tree ofG
- Computing the connected components ofG
- Computing, for every vertexv of G, the minimum

number of edges of any path betweens andv.


