
1

2001-05-08 1

COSC 2011 Section N

Tuesday, May 8 2001

Overview

n Undirected Graph Traversals

u Depth-First Search

uBreadth-First Search

2001-05-08 2COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Definition:

u A graph traversal is a
systematic procedure for
visiting all vertices and
edges of a graph.

u Efficient if it visits all
vertices and edges in
linear time.

u Two efficient methods:

« Depth-First Search
« Breadth-First Search

2001-05-08 3COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Depth-First Search (DFS):

u “Search” deeper in the
graph whenever possible.

u Edges are “explored” out
of the the most recently
visited vertex v that still
has unexplored edges
leaving it.

u When all of v’s edges
have been explored,
search “backtracks” to

2001-05-08 4COSC 2011
Section N

Undirected Graph
Traversal - DFS:

u explore edges leaving the
vertex from which v was
discovered.

u This process continues
until all vertices reachable
from the original source
vertex have been
discovered.

u If any undiscovered
vertices remain, one of
them is selected as a new
source and search repeats.

2

2001-05-08 5COSC 2011
Section N

2001-05-08 6COSC 2011
Section N

2001-05-08 7COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Visualize DFS by orienting
edges along the directions
they are explored during the
traversal.

u Discovery or tree Edges:
« Edges used to discover

new vertices.

u Back Edges:
« Edges leading to

already visited vertices.

2001-05-08 8COSC 2011
Section N

Undirected Graph
Traversal - DFS:

u Discovery edges form a
spanning tree of the
connected component
starting at start vertex s.

3

2001-05-08 9COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Algorithm:

n Back edges represent a
cycle!

2001-05-08 10COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Algorithm Assumptions:

u Have a “way” to
determine whether a
vertex or edge has been
explored or not.

u Have a “way” to label
edges as discovery or
back edges.

u This may require
additional storage space
and may affect running
time!

2001-05-08 11COSC 2011
Section N

2001-05-08 12COSC 2011
Section N

Undirected Graph
Traversal - DFS:

n Running Time:

4

2001-05-08 13COSC 2011
Section N

Undirected Graph
Traversal - DFS:

2001-05-08 14COSC 2011
Section N

Undirected Graph
Traversal - DFS:
n Let G be a graph with n vertices and

m edges represented with an
adjacency list structure. There exists
O(n+m) algorithms based on DFS to
compute:

u Test whether G is connected.

u Compute spanning tree of G if G
is connected.

u Compute connected components
of G.

u Compute path between two
vertices of G or report no path
such path exists.

u Compute cycle in G or report no
cycle exists.

2001-05-08 15COSC 2011
Section N

DFS Example: (1)

2001-05-08 16COSC 2011
Section N

DFS Example: (2)

5

2001-05-08 17COSC 2011
Section N

DFS Example: (3)

2001-05-08 18COSC 2011
Section N

DFS Example: (4)

2001-05-08 19COSC 2011
Section N

DFS Example: (5)

2001-05-08 20COSC 2011
Section N

DFS Example: (6)

6

2001-05-08 21COSC 2011
Section N

DFS Example: (7)

2001-05-08 22COSC 2011
Section N

DFS Example: (8)

2001-05-08 23COSC 2011
Section N

DFS Example: (9)

2001-05-08 24COSC 2011
Section N

DFS Example: (10)

7

2001-05-08 25COSC 2011
Section N

DFS Example: (11)

Breadth-First Search
• Like DFS, aBreadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
defines a spanning tree with several useful properties

- The starting vertexs has level 0, and, as inDFS,
defines that point as an “anchor.”

- In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

- These edges are placed into level 1
- In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

- This continues until every vertex has been
assigned a level.

- The label of any vertexv corresponds to the length
of the shortest path froms to v.

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

More BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

BFS Pseudo-Code

Algorithm BFS(s):
Input : A vertexs in a graph
Output : A labeling of the edges as “discovery” edges

and “cross edges”
initialize container L0 to contain vertexs
i ← 0
while Li is not emptydo

create container Li+1 to initially be empty
for each vertexv in Li do

for each edgee incident onv do
if edgee is unexploredthen

let w be the other endpoint ofe
if vertexw is unexploredthen
 label eas a discovery edge
 insertw into Li+1
else
 labele as a cross edge

i ← i + 1

Properties of BFS
• Proposition: Let G be an undirected graph on which

a aBFS traversal starting at vertexs has been
performed. Then
- The traversal visits all vertices in the connected

component ofs.
- The discovery-edges form a spanning treeT,

which we call theBFS tree, of the connected
component ofs

- For each vertexv at leveli, the path of theBFStree
T betweens andv hasi edges, and any other path
of G betweens andv has at leasti edges.

- If (u, v) is an edge that is not in theBFS tree, then
the level numbers ofu andv differ by at most one.

• Proposition: Let G be a graph withn vertices andm
edges. ABFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
- Testing whetherG is connected.
- Computing a spanning tree ofG
- Computing the connected components ofG
- Computing, for every vertexv of G, the minimum

number of edges of any path betweens andv.

