

- Definition:
 - A graph traversal is a systematic procedure for visiting all vertices and edges of a graph.
 - Efficient if it visits all vertices and edges in linear time.
 - Two efficient methods:
 - **Depth-First Search**

COSC 2011 Section

Breadth-First Search

2

4

Undirected Graph Traversal - DFS:

- Depth-First Search (DFS):
 - "Search" deeper in the graph whenever possible.
 - Edges are "explored" out of the most recently visited vertex *v* that still has unexplored edges leaving it.
 - When all of *v*'s edges have been explored, search "backtracks" to

COSC 2011

Section

2001-05-08

3

Undirected Graph Traversal - DFS:

- explore edges leaving the vertex from which *v* was discovered.
- This process continues until all vertices reachable from the original source vertex have been discovered.
- If any undiscovered vertices remain, one of them is selected as a new source and search repeats.

2001-05-08

COSC 2011 Section

Undire Traver	cted Graph sal - DFS:		Und Trav
 Visualize DFS by orienting edges along the directions they are explored during the traversal. 			•
◆ <i>L</i> ★	Discovery or tree Edges used to discovery or tree Edges used to disconew vertices.	lges: cover	
◆ <i>E</i> ★	<i>Back</i> Edges: Edges leading to already visited ve	rtices.	
2001-05-08	COSC 2011 Section	7	2001-05-08

• Discovery edges form a *spanning tree* of the connected component starting at start vertex *s*.

COSC 2011 Section

8

- Algorithm Assumptions:
 - Have a "way" to determine whether a vertex or edge has been explored or not.
 - Have a "way" to label edges as discovery or back edges.
 - This may require additional storage space and may affect running time!

COSC 2011 Section 10

2001-05-08

	DFS Properties	
 Proposition which a D preformes 1) The control 2) The the 	on 9.12 : Let G be an undirected OPS traversal starting at a vertex 4. Then: traversal visits all vertices in t meeted component of s e discovery edges form a spann connected component of s	i graph on s has been he ing tree of
 Justificati 	on of 1):	
 Let's us is at lear first unv Because path, the edge(u, and just 	c a contradiction argument: sup st on vertex v not visited and le risited vertex on some path from v was the first unvisited vertex ere is a neighbor u that has been en we visited u we must have lo w). Therefore w must have been ification	pose there t w be the n s to s, x on the n visited, ooked at n visited.
• Justificati	on of 2):	
 We only vertices edges, i. This is a vertex in 	mark edges from when we go . So we never form a cycle of d .e. discovery edges form a tree. a spanning tree because DFS vi n the connected component of a	io unvisited iscovery sits each
epite First Searc	iĥ	16
05-08	COSC 2011	

Undire Travers	cted Graph sal - DFS:	
■ Run	ning Time:	
• Remember:		
- DFS is cal	led on each vertex exactly	once.
 Every edg each of its 	e is examined exactly twice vertices	e, once from
 For n_s vertice component of O(n, +m) til 	tes and m_s edges in the con of the vertex s, a DFS starting me if:	nected ng at <i>s</i> runs in
- The graph the adjace take const	is represented in a data str ncy list, where vertex and e ant time	ucture, like edge methods
 Marking a vertex has 	vertex as explored and test been explored takes O(deg	ing to see if a gree)
 By markin consider th so we do n once. 	ng visited nodes, we can sy he edges incident on the cu not examine the same edge	stematically rrent vertex more than
2001-05-08	COSC 2011 Section	12

- Let G be a graph with *n* vertices and *m* edges represented with an adjacency list structure. There exists O(*n*+*m*) algorithms based on DFS to compute:
 - Test whether G is connected.
 - Compute *spanning tree* of G if G is connected.
 - Compute connected components of G.
 - Compute path between two vertices of G or report no path such path exists.
 - Compute cycle in G or report no cycle exists.

2001-05-08	COSC 2011 Section	14

Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties
 - The starting vertex *s* has level 0, and, as in DFS, defines that point as an "anchor."
 - In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
 - These edges are placed into level 1
 - In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
 - This continues until every vertex has been assigned a level.
 - The label of any vertex *v* corresponds to the length of the shortest path from *s* to *v*.

BFS Pseudo-Code

```
Algorithm BFS(s):
  Input: A vertex s in a graph
  Output: A labeling of the edges as "discovery" edges
    and "cross edges"
 initialize container L_0 to contain vertex s
  i \leftarrow 0
  while L<sub>i</sub> is not empty do
    create container L_{i+1} to initially be empty
    for each vertex v in L_i do
      for each edge e incident on v do
         if edge e is unexplored then
           let w be the other endpoint of e
           if vertex w is unexplored then
           label e as a discovery edge
           insert w into L_{i+1}
           else
           label e as a cross edge
```

 $i \leftarrow i + 1$

Properties of BFS

- Proposition: Let *G* be an undirected graph on which a a BFS traversal starting at vertex *s* has been performed. Then
 - The traversal visits all vertices in the connected component of *s*.
 - The discovery-edges form a spanning tree *T*, which we call the BFS tree, of the connected component of *s*
 - For each vertex v at level i, the path of the BFS tree
 T between s and v has i edges, and any other path
 of G between s and v has at least i edges.
 - If (*u*, *v*) is an edge that is not in the BFS tree, then the level numbers of *u* and *v* differ by at most one.
- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time O(n + m). Also, there exist O(n + m) time algorithms based on BFS for the following problems:
 - Testing whether *G* is connected.
 - Computing a spanning tree of G
 - Computing the connected components of G
 - Computing, for every vertex *v* of *G*, the minimum number of edges of any path between *s* and *v*.