COSC 2011 Section N

Tuesday, May 82001
Overview

- Undirected Graph Traversals
- Depth-First Search
-Breadth-First Search

Undirected Graph Traversal - DFS:

- Depth-First Search (DFS):
- "Search" deeper in the graph whenever possible.
- Edges are "explored" out of the the most recently visited vertex v that still has unexplored edges leaving it.
- When all of v 's edges have been explored, search "backtracks" to
\qquad

Undirected Graph Traversal - DFS:

- explore edges leaving the vertex from which v was discovered.
- This process continues until all vertices reachable from the original source vertex have been discovered.
- If any undiscovered vertices remain, one of them is selected as a new source and search repeats.

Undirected Graph Traversal - DFS:

- Discovery edges form a spanning tree of the connected component starting at start vertex s.
- Discovery or tree Edges:
* Edges used to discover new vertices.

- Back Edges:

* Edges leading to already visited vertices.

Undirected Graph Traversal - DFS:

- Algorithm:

```
Algorithm DFS(v);
    Input: A vertex v in a graph
    Output: A labeling of the edges as "discovery" edges
        and "backedges"
    for each edge e incident on v do
        if edge e is unexplored then
            let w be the other endpoint of e
            if vertex w}\mathrm{ is unexplored then
            label e}\mathrm{ as a discovery edge
            recursively call DFS(w)
        else
        label e as a backedge
```


DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of \&
2) The discovery edges form a spanning tree of the connected component of s

- Justification of I):
- tet's use a colitradiction argument: suppose there is at least on weriex y sol visited and let w be the lirst anvisited vertex of some path froms to k.
- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
- But when we visited a we chast have looked at edgo(u,w). Thercfore w mmst have been visited. - and fustification
- Justification of 2)
- We only mark edges from when we go to unvisited vertices. So we bever form a cycle of discovery edges, Le. discovery edges form a tree.
- This is a spanming tree because DFS visits each verlex in the conmected component of s

Undirected Graph Traversal - DFS:

- Algorithm Assumptions:
- Have a "way" to determine whether a vertex or edge has been explored or not.
- Have a "way" to label edges as discovery or back edges.
- This may require additional storage space and may affect running time!

Undirected Graph Traversal - DFS:

- Running Time:
- Remember:
- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from each of its vertices
- For n_{s} vertices and m_{s} edges in the connected component of the vertex s, a DFS starting at s runs in $\mathrm{O}\left(n_{s}+m_{s}\right)$ time if:
- The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
- Marking a vertex as explored and testing to see if a vertex has been explored takes O (degree)
- By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.

Undirected Graph Traversal - DFS:

Marking Vertices

- Let's look at ways to mark vertices in a way that satisfies the above condition.
- Extend vertex positions to store a variable for marking

- Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because is supports the mark and test operations in $\mathrm{O}(1)$ expected time

DFS Example: (1)

Determining Incident Edges

- DFS depeuds on how you obtain the incident edges.
- If we siatt at A and we examine the edge to F, then to B, then E, C, and Jinally G

园- (
$\xrightarrow{T h e ~ r e s u l t i n g ~ g r a p h ~ i s: ~}$
 dend end

If we instead examine the tree starting at A and looking at E, the C, then E B , and finally F.

the resulting set of hackEdpes, disoovery Edpes and recursion poiats is different.

- Now an cxample of a DFS

Undirected Graph Traversal - DFS:

- Let G be a graph with n vertices and m edges represented with an adjacency list structure. There exists $\mathrm{O}(n+m)$ algorithms based on DFS to compute:
- Test whether G is connected.
- Compute spanning tree of G if G is connected.
- Compute connected components of G.
- Compute path between two vertices of G or report no path such path exists.
- Compute cycle in G or report no cycle exists.

DFS Example: (2)

DFS Example: (4)

DFS Example: (5)

DFS Example: (6)

DFS Example: (8)

Capth-That Saurch
12
2001-05-08

COSC 2011

22

DFS Example: (9)

Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties
- The starting vertex s has level 0 , and, as in DFS, defines that point as an "anchor."
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

a)

c)

d)

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |

More BFS

BFS Pseudo-Code

Algorithm BFS(s):
Input: A vertex s in a graph
Output: A labeling of the edges as "discovery" edges and "cross edges"
initialize container L_{0} to contain vertex s
$i \leftarrow 0$
while L_{i} is not empty do
create container $\mathrm{L}_{\mathrm{i}+1}$ to initially be empty
for each vertex v in L_{i} do
for each edge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as a cross edge
$i \leftarrow i+1$

Properties of BFS

- Proposition: Let G be an undirected graph on which a a BFS traversal starting at vertex s has been performed. Then
- The traversal visits all vertices in the connected component of s.
- The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s
- For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
- If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.
- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $\mathrm{O}(n+m)$.
Also, there exist $\mathrm{O}(n+m)$ time algorithms based on BFS for the following problems:
- Testing whether G is connected.
- Computing a spanning tree of G
- Computing the connected components of G
- Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

