
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2006 (Section M)
Topic D: Control Structures - Iteration

Monday, February 20 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Counted Loops
Introduction

Experimenting with counted loops

ListBox Control
Introduction

Before We Begin

Administrative Details (1):
Lab Exercises

You should be working on Ex 5-3 this week
Due February 28

Still have a few exercises and tests that were
previously distributed but have not been picked up
yet

If you have not picked up any exercise or test yet,
you can after the lecture

Some Questions to Consider (1):
What is a loop ?

Why are loops important in any programming language ?

What is a conditional loop ?

How many forms of conditional loops are available ?

Describe each form of the conditional loop ?

What must we, as programmers ensure for every loop ?

Counted Loops

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (1):
Recall Conditional Loops

Basically, we iterate the loop statements as long as
the loop condition holds

Useful when we do not know how many times the
loop will execute

May execute any number of times before
condition is not met

Many times we do know exactly how many times the
loop should execute

In such a situation, we can use a counted loop
instead

Introduction (2):
What Exactly is a Counted Loop ?

A loop that is executed a specific number of times

We of course need to know how many times the loop
will iterate before we start the loop!

Central to the counted loop is the counter variable
known as the loop index that keeps track of how
many times the loop has iterated

Value of the loop index is tested after each
iteration to determine whether or not to exit
the loop → if less than the number of total loop
iterations then continue with next iteration

Counted Loops (1):
What Exactly is a

Counted Loop ? (cont.)
Three components

1. Initialize the counter
2. Increment the

counter
3. Test the counter to

determine when it is
time to terminate
the loop

Counted Loops (2):
Counted Loops and Visual Basic

General form (syntax) of the counted loop

For loopIndex = initialValue to endValue [Step Increment]

statements of loop body

Next

loopIndex
Loop counter → must be a numeric value

initialValue
Initial value of loop index → may be a constant,
variable, numeric value or numeric expression

Counted Loops (3):
Counted Loops and Visual Basic (cont.)

General form (syntax) of the counted loop

For loopIndex = initialValue to endValue [Step Increment]

statements of loop body

Next

endValue
Loop terminates when index = endValue → may
be a constant, variable, numeric value or numeric
expression

Counted Loops (4):
Counted Loops and Visual Basic (cont.)

General form (syntax) of the counted loop

For loopIndex = initialValue To endValue [Step Increment]

statements of loop body

Next

Step Increment
Step is a keyword and increment is amount to
increase index after each iteration → optional
and if not present default = 1

Next is a keyword

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Counted Loops (5):
Counted Loops and Visual Basic (cont.)

Outline of the counted loop operation
Prior to starting loop, index set to “initialValue”
Final value for the loop index is set to the value
of endValue
After index is initialized, it is tested to see if it
is greater than endValue → if not, loop
statements executed, otherwise loop terminates
Next statement causes index to be incremented
by “Increment” or 1 if no increment is specified
Value of index is then compared again to
endValue

Counted Loop Examples (1):
Some Examples

Lets examine some different “For” statements
Make sure you understand each of the following

For index = 2 To 100 Step 2

For countValue = startValue To EndValue Step IncrementValue

For countValue = 0 To coefficientType.ListCount-1

For index = (someValue – 5) To totalPossible

For curRate = 0.5 To 0.25 Step 0.05

For negativeCounter = 10 To Step -1

Counted Loop Examples (2):
Further Examples

Some complete counted loop examples

Dim end = 10

Dim start = 0

For index = start To end

text1.text = CStr(index)

Next

For index = 0 To 10

text1.text = CStr(index)

Next

Counted Loop Specifics (1):
Negative Increment (Counting Backwards)

As shown in the previous examples, we can count
backwards with a counted loop

Use a negative number for the increment and
explicitly specify it with the “Step”
When the Step is negative, VB tests for less
than as opposed to greater than

For index = 10 To 0 Step -1

text1.text = CStr(index)

Next

Counted Loop Specifics (2):
Conditions Satisfied Before Loop Entry

At times, final value will be reached before entry
into the loop

Statements in the loop body will not be executed
at all in such a case

final = 5

For index = 6 To Final

text1.text = CStr(index)

Next

Counted Loop Specifics (3):
Altering the Value of Loop Control Variables

Once we enter the body of the loop, initialValue,
endValue and increment have already been set

But we can alter these values within the loop
body → this will have no effect on the loop (the
number of times the loop iterates will not
change!)

final = 10

increase = 2

For index = 1 To final Step increase

final = 100

Next

No affect on number
of loop iterations

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Counted Loop Specifics (4):
Endless Loops

Although changing the initial, end and increment
values doesn’t affect the loop, changing the loop
index can have an affect on the loop

Can have a loop that never ends!

final = 10

increase = 2

For index = 1 To final Step increase

index = 1

Next index

Index will never
reach “final” since it
is set to 1 after each

iteration

Counted Loop Specifics (5):
Exiting For / Next Loops

Usually, a “For” loop should execute until it
completes (e.g., until index reaches the final value)

There may be times however where we want to
exit before the index reaches the final value
Visual Basic provides the “Exit For” statement
to exit a “For” loop early
Typically, the End For will be part of an If
statement → will allow us to exit the loop given a
particular condition

Counted Loop Specifics (6):
Exiting For / Next Loops (cont.)

Example
Program that continually (in a loop) takes in user
input and performs some operation on it and if
input is the string “Exit” then exit program

For index = 1 To 10

If (txtInput.Text = “Exit”) Then

txtMessage.text = “You must enter something”

Exit For

End IF

Next

ListBox Control

Introduction (1):
As an Aside

Recall that an object contains properties that can
be accessed, modified etc.

An object can also have methods associated with it
A method is a sub-program (think of the event
handlers we know) that can take zero or more
arguments and returns one value
Since a method is associated with (belongs to) an
object, it is accessed in the same manner as an
object’s properties → using the “dot” notation

objectName.methodName

Introduction (2):
What is a ListBox Control ?

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (3):
What is a ListBox Control ? (cont.)

An object containing a list of output
If the data displayed in the ListBox exceeds its
height, a scroll bar appears
Displays on each row a string value, generically
called an item
The item must be displayed on the ListBox using
the AddItem method of the ListBox

listBoxName.AddItem(stringExpression)

Introduction (4):
What is a ListBox Control ? (cont.)

Example → displaying a row in a listBox called List1

Private Sub Form_Load()
Dim testString As String
testString = "This is a test of the

ListBox control"
List1.AddItem (testString)

End Sub

After executing the
above code segment,

the following is
observed in the
ListBox control

placed on the form

Introduction (5):
What is a ListBox Control ? (cont.)

When we add information to the ListBox (via the
“addItem” method), the new information is
appended to the next line

But what if we don’t want to append and wish to
start “clean” → there is a method to clear the
ListBox of any information it may currently hold
thus allowing you to “start fresh”

The method to clear the ListBox is “Clear()” and
takes no arguments → ListBox.Clear()

Live Demos (1):
“Live” Examples of Counted Loops and

ListBoxes
Lets look at some simple examples of working with
counted loops and Listbox controls in Visual Basic

