Introduction to Computer Use II

Programming
Winter 2005 (Section M)

Topic B: Variables, Data Types and Expressions
Monday, January 23 2006

Bill Kapralos

CSE 1530, Winter 2006 Bill Kapralos

Overview (1):
a Before We Begin
s Some administrative details
< Some questions to consider
a Data Types and Visual Basic
& Data type conversion
+ String to data type conversion functions
+ Other data type to String conversion functions
a Positioning Objects on a Form

a Example

Overview (2):
a “Live Demos” (Time Permitting)

Before We Begin

Administrative Details (1):

o Lab Exercise 3-4
o This week, you should be working on Ex. 3-4 from
your ftextbook
o Follow instructions given on the course website
o Due Monday, January 30 2005 before noon

« Place in the assignment drop-box located on the 1st
floor of the CSE building just by the elevator and
CSE undergraduate offices

o Wednesday's office hours will be held in the Glade lab

CSE 1530 Winter 2006
Bill Kapralos

Some Questions to Consider (1):

s How do we declare a constant ?
o How do we declare a variable ?
e What is a variable's scope ?

o Is Visual Basic case-sensitive with respect to variable
declarations ?

o What is a function ?

o What is an argument ?

Introduction to Computer Use II

Data Types & VB

Data Type Conversion (1):

o Built in VB Conversion Functions
a Visual Basic functions o convert between data types
s As an aside — what is a function ?

« A convenient way to encapsulate some computation
that can be then used many times over without
worrying about its implementation

= Allows us to ignore Aowa job is done

« All we need to know is what is done (outcome)

- Imagine having to compute some computation many
times — you can replicate the code many times or
you can write the code once within a function and
simply call the function

Data Type Conversion (2):

o Built in VB Conversion Functions (cont.)

o In general these conversion functions take one or
more arguments and produce a single result (called
the function return value) of a particular type

« Argument — when you call and use the function,
you may have to supply it zero or more values -
these values are known as arguments

« Function return value — the value of a particular
type returned by the function - the value can be
used by the caller of the function where
appropriate

Data Type Conversion (3):

@ Built in VB Conversion Functions (cont.)
a Arguments may be a single variable or a single value
as an argument provided it is of the required type
a Argument may also be an expression that, when
evaluated, will result in a single value
a Examples — assume a function named “myFunction”
that takes one Integer argument
« myFunction(Commandl.Width)
« myFunction(Command1.Width / 2)
» myFunction((Commandl1.Width / 2) + 50)
« myFunction(795 - Command1.Width * 10)

Data Type Conversion (4):

@ Built in VB Conversion Functions (cont.)
o Many times it is common fo convert from a string to
some other value

« Usually, user input will be in the form of a string
(e.g., entering data in a textbox) and we therefore
must convert to the appropriate type

« Visual Basic functions that convert a string to any
other data type are widely used

+ Lets take a look at these functions...

Data Type Conversion (5):
@ Converting Strings to Other Types

Function Name | Return Type Argument
CBool Boolean Any valid string of numeric expression
CCur Currency | String with range of Currency values
CDbl Double String with range of Double values
CInt Integer String with range of Integer values
Clng Long Integer | String with range of Long Integer values
CSng Single String with range of Single values
CDate Date Any value that can be interpreted as a date

CSE 1530 Winter 2006
Bill Kapralos

Introduction to Computer Use II

Data Type Conversion (6):

e Converting Strings to Other Types (cont.)
& The conversion functions take one argument (the
string value) and return a single value
o The argument can be either a previously defined
String variable or entering the String directly
o Examples
« String to Double — CDbl(TextBox1.Text)
+ String to Double — CDbI("100.11")
+ String to Integer — CInt(TextBox1.Text)
« String to Integer — CInt(*100")

Data Type Conversion (7):

e Converting Strings to Other Types (cont.)
a Of course, in order to be of any use, we must make
use of the return typel
s We can use the return type anywhere that particular
type is used
a Basically, treat the “function(argument)” as a value
and the type of the value is the function return type
« Command1.Top = CInt(TextBox1.Text)
« Command1.Top = 100 + CInt(TextBox1.Text) /2
a When part of an expression, the function is evaluated
and its return value will replace the function call

Data Type Conversion (8):
e Converting Other Types to Strings

o Functions are also available to convert from any other
data type to a string

+ Generally, when Visual Basic performs this
conversion for us without explicitly calling a
function, the conversion is less ambiguous than
going the other way

+ We should still explicitly call the appropriate
conversion functions — failure to use the
conversion functions promotes a lack of awareness
of data types and leads to bad habits that may
eventually lead to errors!

Data Type Conversion (9):

@ Converting Other Types to Strings

a The CStr function

+ Takes argument of any type and returns a String
representation of the argument

= Used as any other conversion function!
« Textbox1.text = CStr(100.0)
« Textbox1l.text = CStr(1000)
« Textbox1l.text = CStr(True)

* What happens when the argument is also a Sting —
Textboxl.text = CStr("100.0") 2??

Data Type Conversion (10):

e The Dangers of Not Converting Types
o Recall that Visual Basic will attempt to perform
conversion of data types but the result may not
always be what you expect!
o Take the "+" operation
« With numeric values (e.g., Integer, Single) the
addition of two such values is also a number
« But, the "+" operator has a different meaning with
strings! — concatenation
« Visual Basic will not attempt to convert two strings
that are to be added

Data Type Conversion (11):
o The Dangers of Not Converting Types (cont.)

a Example
« 100 + 1100 = 1200

+"100" +"1100" = 1001100 — Two strings will be
concatenated

w,on

a What if one arguments of the "+" operator is a string
only ?

+ 100 + "1100" — what will happen here 22?

CSE 1530 Winter 2006
Bill Kapralos

Introduction to Computer Use II

Data Type Conversion (12):
o The Dangers of Not Converting Types (cont.)

s Actual example of using the conversion functions —
Exercise 3-3 revisited

Interestl.Text = CDbl(Interest.Text) * Cdbl(InitialCap.Text)
Capitall. Text = CDbl(InitialCap.Text) + CDbl(Interestl. Text)

o Above expressions are relying on Visual Basic to
convert to String — in principle, we should have
Interestl.Text = CStr(CDbl(Interest.Text)*CDbl(InitialCap.Text)

Capitall.Text = CStr(CDbI(InitialCap.Text) + CObl(Interestl.Text))
... (etc)

Positioning Objects on a
Form

Object Positions on a Form (1):

o Form “Coordinate System”

o Every object we place on a form contains a position
relative to the form's coordinate system

= Fomml [10] =]

Top

Left 3
———————— Commandl IHeight

Object Positions on a Form (2):

o Form "Coordinate System” (cont.)

a Measurements (integer numbers) are specified in
twips — measurement system from the printing
industry

« One twip — 1/20 of a printer’s point or 1/1440 of
an inch

- If a control's width property is 1440 twips, then it
is basically 1 inch wide — of course, on the screen
it may appear smaller of larger depending on your
screen's resolution

Object Positions on a Form (3):

o Form "Coordinate System” (cont.)
o Top

+ Integer value representing the position of the top
edge of the object relative to top window edge

o Left

+ Integer value representing the position of the left
edge of the object relative to left window edge

o Object width

+ The width of the object
o Object height

+ The height of the object

CSE 1530 Winter 2006
Bill Kapralos

Positioning Objects on a Form (1):

e Centering a Control on a Form

a We will add a button to a form and eventually place it
in the center of the form (horizontally)

i
Button placed on form and
centered horizontally

Center Il |

Introduction to Computer Use II

Positioning Objects on a Form (2):

o Centering a Control on a Form (cont.)
s Lets begin by setting the width of our button (which
we will call cmdCenter) to half the width of the form
- cmdCenter.Width = Form1.Width / 2
o Now lets center the button horizontally on the form
« cmdCenter.left = Form1.Width / 2

« Is this sufficient - will this work ? — nol We have
to account for the buttons own width as well!

« cmdCenter Left = (Form1.Width / 2) -
(cmdCenter.Width / 2)

Positioning Objects on a Form (3):

o Centering a Control on a Form (cont.)

& But where do these statements go in our code ?

+ How about placing them in the cmdCenter_Click()
method ? — not a good solution since, the button
must be pressed to center the button but what if
we resize the window ?

» What about placing the statements in the
Form1_Resize() event handler method ? — a much
better approach!

Positioning Objects on a Form (4):

@ Centering a Control on a Form (cont.)

o Form resize method
+ Automatically called whenever the form itself is
resized — makes sense to place the code here
since the code will be executed any time the
form's size changes!

M Fiogect] - Form] [Code) — al01x]
Ilnlln -I Reaize -i
FEL) -
[o Load |
Private Sub Form Load() N EComeaabrey
LD sl
End Sub J_._u:.:

Private Sub Form Resize(] [OLESeDse

End Sub

GueryLinksd
=g« Terminate =
A=y [m, o

Positioning Objects on a Form (5):

a Centering a Control on a Form (cont.)

a Placing the code in the Resize() methods still doesn't
ensure the correct placement of the button when the
form first appears for the first time

+ Can also place the code in the Load() event handler
that gets called when the form is first “loaded”
(e.g., just before it first appears on the display)

a But what about centering the object with respect to
the height of the form ?

+ Should be the same process?
- Experiment with this!

CSE 1530 Winter 2006
Bill Kapralos

