
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2005 (Section M)
Topic B: Variables, Data Types and Expressions

Monday, January 23 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Data Types and Visual Basic
Data type conversion

String to data type conversion functions
Other data type to String conversion functions

Positioning Objects on a Form
Example

Overview (2):
“Live Demos” (Time Permitting)

Before We Begin

Administrative Details (1):
Lab Exercise 3-4

This week, you should be working on Ex. 3-4 from
your textbook

Follow instructions given on the course website

Due Monday, January 30 2005 before noon
Place in the assignment drop-box located on the 1st

floor of the CSE building just by the elevator and
CSE undergraduate offices

Wednesday’s office hours will be held in the Glade lab

Some Questions to Consider (1):
How do we declare a constant ?

How do we declare a variable ?

What is a variable’s scope ?

Is Visual Basic case-sensitive with respect to variable
declarations ?

What is a function ?

What is an argument ?

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Data Types & VB

Data Type Conversion (1):
Built in VB Conversion Functions

Visual Basic functions to convert between data types
As an aside → what is a function ?

A convenient way to encapsulate some computation
that can be then used many times over without
worrying about its implementation
Allows us to ignore how a job is done
All we need to know is what is done (outcome)
Imagine having to compute some computation many
times → you can replicate the code many times or
you can write the code once within a function and
simply call the function

Data Type Conversion (2):
Built in VB Conversion Functions (cont.)

In general these conversion functions take one or
more arguments and produce a single result (called
the function return value) of a particular type

Argument → when you call and use the function,
you may have to supply it zero or more values –
these values are known as arguments
Function return value → the value of a particular
type returned by the function - the value can be
used by the caller of the function where
appropriate

Data Type Conversion (3):
Built in VB Conversion Functions (cont.)

Arguments may be a single variable or a single value
as an argument provided it is of the required type

Argument may also be an expression that, when
evaluated, will result in a single value

Examples → assume a function named “myFunction”
that takes one Integer argument

myFunction(Command1.Width)
myFunction(Command1.Width / 2)
myFunction((Command1.Width / 2) + 50)
myFunction(795 - Command1.Width * 10)

Data Type Conversion (4):
Built in VB Conversion Functions (cont.)

Many times it is common to convert from a string to
some other value

Usually, user input will be in the form of a string
(e.g., entering data in a textbox) and we therefore
must convert to the appropriate type
Visual Basic functions that convert a string to any
other data type are widely used
Lets take a look at these functions…

Data Type Conversion (5):
Converting Strings to Other Types

String with range of Long Integer valuesLong IntegerCLng

String with range of Single valuesSingleCSng

CDate

CInt

CDbl

CCur

CBool

Function Name

Any value that can be interpreted as a dateDate

String with range of Integer valuesInteger

String with range of Double valuesDouble

String with range of Currency valuesCurrency

Any valid string of numeric expressionBoolean

ArgumentReturn Type

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Data Type Conversion (6):
Converting Strings to Other Types (cont.)

The conversion functions take one argument (the
string value) and return a single value

The argument can be either a previously defined
String variable or entering the String directly

Examples
String to Double → CDbl(TextBox1.Text)
String to Double → CDbl(“100.11”)
String to Integer → CInt(TextBox1.Text)
String to Integer → CInt(“100”)

Data Type Conversion (7):
Converting Strings to Other Types (cont.)

Of course, in order to be of any use, we must make
use of the return type!

We can use the return type anywhere that particular
type is used

Basically, treat the “function(argument)” as a value
and the type of the value is the function return type

Command1.Top = CInt(TextBox1.Text)
Command1.Top = 100 + CInt(TextBox1.Text) / 2

When part of an expression, the function is evaluated
and its return value will replace the function call

Data Type Conversion (8):
Converting Other Types to Strings

Functions are also available to convert from any other
data type to a string

Generally, when Visual Basic performs this
conversion for us without explicitly calling a
function, the conversion is less ambiguous than
going the other way
We should still explicitly call the appropriate
conversion functions → failure to use the
conversion functions promotes a lack of awareness
of data types and leads to bad habits that may
eventually lead to errors!

Data Type Conversion (9):
Converting Other Types to Strings

The CStr function
Takes argument of any type and returns a String
representation of the argument
Used as any other conversion function!
Textbox1.text = CStr(100.0)
Textbox1.text = CStr(1000)
Textbox1.text = CStr(True)
What happens when the argument is also a Sting →
Textbox1.text = CStr(“100.0”) ???

Data Type Conversion (10):
The Dangers of Not Converting Types

Recall that Visual Basic will attempt to perform
conversion of data types but the result may not
always be what you expect!

Take the “+” operation
With numeric values (e.g., Integer, Single) the
addition of two such values is also a number
But, the “+” operator has a different meaning with
strings! → concatenation
Visual Basic will not attempt to convert two strings
that are to be added

Data Type Conversion (11):
The Dangers of Not Converting Types (cont.)

Example
100 + 1100 = 1200
“100” +”1100” = 1001100 → Two strings will be
concatenated

What if one arguments of the “+” operator is a string
only ?

100 + “1100” → what will happen here ???

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Data Type Conversion (12):
The Dangers of Not Converting Types (cont.)

Actual example of using the conversion functions →
Exercise 3-3 revisited

Interest1.Text = CDbl(Interest.Text) * Cdbl(InitialCap.Text)
Capital1.Text = CDbl(InitialCap.Text) + CDbl(Interest1.Text)

Above expressions are relying on Visual Basic to
convert to String → in principle, we should have

Interest1.Text = CStr(CDbl(Interest.Text)*CDbl(InitialCap.Text)
Capital1.Text = CStr(CDbl(InitialCap.Text) + CDbl(Interest1.Text))

... (etc)

Positioning Objects on a
Form

Object Positions on a Form (1):
Form “Coordinate System”

Every object we place on a form contains a position
relative to the form’s coordinate system

Height

Object Positions on a Form (2):
Form “Coordinate System” (cont.)

Measurements (integer numbers) are specified in
twips → measurement system from the printing
industry

One twip → 1/20 of a printer’s point or 1/1440 of
an inch
If a control’s width property is 1440 twips, then it
is basically 1 inch wide → of course, on the screen
it may appear smaller of larger depending on your
screen’s resolution

Object Positions on a Form (3):
Form “Coordinate System” (cont.)

Top
Integer value representing the position of the top
edge of the object relative to top window edge

Left
Integer value representing the position of the left
edge of the object relative to left window edge

Object width
The width of the object

Object height
The height of the object

Positioning Objects on a Form (1):
Centering a Control on a Form

We will add a button to a form and eventually place it
in the center of the form (horizontally)

Button placed on form and
centered horizontally

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Positioning Objects on a Form (2):
Centering a Control on a Form (cont.)

Lets begin by setting the width of our button (which
we will call cmdCenter) to half the width of the form

cmdCenter.Width = Form1.Width / 2

Now lets center the button horizontally on the form
cmdCenter.left = Form1.Width / 2
Is this sufficient – will this work ? → no! We have
to account for the buttons own width as well!
cmdCenter.Left = (Form1.Width / 2) –
(cmdCenter.Width / 2)

Positioning Objects on a Form (3):
Centering a Control on a Form (cont.)

But where do these statements go in our code ?
How about placing them in the cmdCenter_Click()
method ? → not a good solution since, the button
must be pressed to center the button but what if
we resize the window ?
What about placing the statements in the
Form1_Resize() event handler method ? → a much
better approach!

Positioning Objects on a Form (4):
Centering a Control on a Form (cont.)

Form resize method
Automatically called whenever the form itself is
resized → makes sense to place the code here
since the code will be executed any time the
form’s size changes!

Positioning Objects on a Form (5):
Centering a Control on a Form (cont.)

Placing the code in the Resize() methods still doesn’t
ensure the correct placement of the button when the
form first appears for the first time

Can also place the code in the Load() event handler
that gets called when the form is first “loaded”
(e.g., just before it first appears on the display)

But what about centering the object with respect to
the height of the form ?

Should be the same process?
Experiment with this!

