
Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

COSC 1530, Winter 2006, Bill Kapralos

Winter 2005 (Section M)

Topic A: Introduction to Problem Solving and Visual Basic

Friday, January 6 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Introduction to Computer Programming
What exactly is computer programming ?

What is the purpose of computer programming ?

Programming Paradigms

Overview (2):
Object Oriented Programming

Fundamental concepts

Introduction to Programming with MS Visual

Basic 6.0
MS Visual Basic 6.0

The VB Integrated Development Environment (IDE)

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Before We Begin

Administrative Details (1):
My Office

Computer Science & Engineering (CSE) 2015

Some Questions to Consider (1):
What is computer programming ?

What is a computer program ?

What is an algorithm ?

What should you strive for when writing an algorithm ?

What is the most effective way to learn any
programming language ?

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Introduction to
Programming (cont.)

Intro. to Computer Programming (8):
Why Program Computers ? (cont.)

Amazingly, everything we have seen a computer do is
the result of a sequence of extremely simple
arithmetic and logic operations done very quickly

The challenge of computer programmers is to come
up with the instructions to put those simple
instructions together in ways that are useful and
appropriate

Intro. to Computer Programming (9):
Why Program Computers ? (cont.)

Computers all around us → programming computers is
not solely meant for computer scientists! Computer
programming can be a benefit for many other
disciplines as well

Mathematics and statistics
Economics
Psychology
Physical and natural sciences etc.

Understanding software development is a crucial
element of many professional career paths

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Intro. to Computer Programming (10):
How Do We Program Computers ?

We “talk” to computers using programming languages
A series of instructions written by a programmer
according to a given set of rules or conventions
(“syntax”)
Similar to human languages used in human-to-
human communication → many types of languages,
each with its own grammar and syntax
Typically we start with an algorithm and then
covert it to the appropriate programming language
The algorithm is “generic” and can be converted to
any programming language

Intro. to Computer Programming (11):
Programming Languages

A great number of programming languages are
currently in existence → no one language is suitable
for writing all types of programs
Some common example programming languages include

Java, C/C++, Basic, COBOL, Pascal, Fortran etc.
Each has its own syntax
Generally, if you become proficient with one
language, its easy to pick up another one → just a
matter of learning the syntax

Can separate programming languages into low-level
and high-level

Intro. to Computer Programming (12):
Low-Level Programming Language

A language that provides little or no abstraction from
a computer's microprocessor
“Low" does not imply inferior to high level
programming languages but rather refers to the
reduced amount of abstraction (e.g., hiding of details
or specifics) between the language and itself

Sometimes called machine language → numeric
code to represent the most basic computer
operations
Typically used by specialist e.g., computer
scientists

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Intro. to Computer Programming (13):
Low-Level Programming Language (cont.)

Sample code listing (8086 assembly language)

_dt_ym0 proc far
push ax
push bx
push dx
xor ax,ax
mov dx,TIMER1_CNT
in al,dx
or al,al
jnz FIXCOUNT0
xor ax,ax
out dx,ax

Intro. to Computer Programming (14):
High-Level Programming Language

Notation uses English-like words and phrases →
instructions are typically readable and can make
sense without having to be a computer scientist!

Makes it possible for scientists, engineers and
business people to solve problems using familiar
terminology and notation rather than cryptic
machine instructions
Of course, there must exist a facility to convert
these high level commands into a form
understandable by the machine → this is the job
of the compiler

Intro. to Computer Programming (15):
High-Level Programming Language (cont.)

Sample code listing (Java code)

public class PairOfDice {

public int die1; // Number showing on the first die.
public int die2; // Number showing on the second die.

public PairOfDice() {
roll(); // Call the roll() method to roll the dice.

}

public PairOfDice(int val1, int val2) {
die1 = val1; // Assign specified values to the instance variables.
die2 = val2;

}

} // end class PairOfDice

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Programming Paradigms (1):
Main Types of Programming Languages

Procedural programming
The program specifies the exact sequence of all
operations
Programming logic determines the next instruction
to execute in response to conditions and user
requests
Example programming languages includes → Basic,
Fortran, Pascal, C

Programming Paradigms (2):
Main Types of Programming Languages (cont.)

Object oriented and event driven programming
Event driven programs are no longer procedural →
do not follow a sequential logic
As a programmer you do not take control and
determine the sequence of operations → the user
takes over!
User can press keys, click on certain buttons
within a window etc. → these actions cause an
event to occur which triggers a particular
procedure (sub-program) you have written to
execute in response to the event

Programming Paradigms (3):
Object Oriented Programming

Also known as “OOP” for short
General idea

A computer program may be seen as composed of a
collection of individual units, or objects, that act
on each other, as opposed to a traditional view in
which a program may be seen as a collection of
functions or procedures or simply as a list of
instructions to the computer
Each object is capable of receiving messages,
processing data, and sending messages to other
objects

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Programming Paradigms (4):
Object Oriented Programming (cont.)

More flexibility, changes to programs can be easily
made and is widely popular in large scale software
engineering

Allows for re-use of code
Proponents of OOP claim that

OOP is easier to learn for those new to computer
programming than previous approaches
Software (code) is often simpler to develop and to
maintain, lending itself to more direct analysis,
coding, and understanding of complex situations
and procedures than other programming methods.

Programming Paradigms (5):
Object Oriented Programming (cont.)

Most OOP programs are also event driven

Visual Basic is an example of an object oriented,
event driven programming language

Although it is considered to be an OOP language, it
doesn’t contain all elements of an OOP language
such as Java for example
Each new release does bring it closer to a true
OOP language however

Object Oriented
Programming

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Fundamental Concepts (1):
Central Concepts to OOP

Object → an entity that you can manipulate in your
program generally by calling methods associated with
the object

Think of it as a “thing” (e.g., a noun)
Think of an object as a “black box” with a public
interface (methods you can call) and a hidden
implementation (the code and data that are
necessary to make these methods work)
As a user of the object, you don’t have to worry
about the implementation details!

Fundamental Concepts (2):
Central Concepts to OOP (cont.)

Class → defines the methods (e.g., sub-programs that
perform (compute) a particular task) and any
properties for the objects

Every object belongs to a class → every object is
an instance of a particular class
Classes are “factories” for objects (e.g., used to
generate objects)
Can have many objects of a particular class and
the properties of each object may have different
values

Fundamental Concepts (3):
Central Concepts to OOP (cont.)

Inheritance → a mechanism for enhancing existing
classes

Suppose you need to implement (create) a new
class and a class representing a more general
concept is available, then the new class can use
(inherent) from the existing class
Suppose you have a class called “Shape” but you
need to define a “Rectangle” → a rectangle is
itself a shape albeit a specific shape!

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Fundamental Concepts (4):
Central Concepts to OOP (cont.)

Properties → tell us something about an object such
as its name, color, size, location or how it behaves

Think of properties as “adjectives” that describe
objects (which have been defined as “nouns”)

Methods → associated with objects
Think of methods as “verbs”
Perform a specific task
For example, in Shape class, we may have a method
called “getArea” that returns the area of the
shape object → we don’t know how it’s calculated
but we know we get the area (abstraction)

Fundamental Concepts (5):
Putting It All Together

An example → shape class

Shape

Square Rectangle Circle Ellipse

Fundamental Concepts (6):
Putting It All Together (cont.)

Shape class is the more general definition and then
we have specific shapes such as squares, circles etc.

Each shape shares certain general properties such
as area but calculating area is specific to the type
of shape being considered (e.g., calculating area
for circle is different than calculating area for
square)
Each shape can inherent the area property from
the general Shape class but then define a method
that will calculate the specific area for the shape
Can have many instances of a particular shape

Introduction to Computer Use II

COSC 1530 Winter 2006

Bill Kapralos

Fundamental Concepts (7):
Putting It All Together (cont.)

Keep in mind that OOP is a very big topic → we can
spend an entire course on OOP

In this course we are not going to any great details
regarding OOP but we should just be aware of
some of the main concepts since VB is itself an
OOP language e.g., have an idea of what an object
is and what methods and properties are
More on this as we work with VB

Fundamental Concepts (8):
Putting It All Together (cont.)

Shape

Square

Length
Width

Area = Length * Width

getArea

Area
Color
Position

Properties

Additional
properties

specific to a
square

Class
definitions

mySquare1

Length = 10
Width = 20
Color = blue
Area = 200

mySquare2

Length = 5
Width = 10
Color = bred
Area = 50

Specific
instances of
the square
class e.g.,
objects of
type square
where the

properties of
each square
may differ

