
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2006 (Section M)
Topic E: Subprograms – Functions and Procedures

Monday, March 13 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Input Validation
Introduction

Example

Miscellaneous Notes
Control Arrays

“White-space”

Before We Begin

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Administrative Details (1):
No Lab Exercise to Submit This Week

Nothing to submit Monday, March 20

Correction For Next Week’s Exercise
Submit Exercise 6-8 and not Exercise 6-9 as stated
on the website

Test 2 Reminder
Wednesday, March 15 2006

Be on time, the test will start at 1:30pm

Some Questions to Consider (1):
What is the purpose of an argument list ?

How do we specify a function’s argument list ?

How do we specify a procedure’s argument list ?

For a function’s argument list, do we need to specify
whether the arguments are passed by reference or
passed by value ?

Input Validation

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (1):
Erroneous User Input

Many programs require user input of some form or
another

We cannot always guarantee the validity of user
entered data → cannot assume it is always valid!

Typically, a program will rely on and require the user
entered data to proceed and complete its task

It is up to the programmer to handle erroneous data
entered by the user

Need to take the appropriate course of action
when invalid data is entered

Introduction (2):
Erroneous User Input (cont.)

Many times we do not wish to proceed with the
execution of the program until we are “certain” that
all entered data is valid

How about performing some form of check on any
entered data and only proceeding once we can
determine the data is valid ?
If we find the data is not valid, then we can keep
prompting the user to re-enter the data until it is
valid

Introduction (3):
Validating User Entered Input

Visual Basic contains a “built-in” construct to allow
you to easily validate user input data

Most controls have a property called
CauseValidation
In addition, controls also have an event called
Validate

CauseValidation and Validate work together and allow
for a simple manner of checking (validating) user
entered data

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (4):
Validating User Entered Input (cont.)

CausesValidation
property of an

object →
default is set to

True
Validate event handler for some

TextBox called “Text1”1 → initially it
is empty hence, even though default
Causes Validation is True, indicating
function will be called, no actions will

be performed!

Introduction (5):
Validating User Entered Input (cont.)

But how can we keep from making such a construct
specific to a particular type of data ? For example,
numeric data → Consider the following

What about indicating to Visual Basic that the user
input entered in a particular control (e.g.,
TextBox) needs to be validated and
When the user enters the data via the control
(e..g, TextBox), an event is generated and a
particular event handler is called/executed → of
course, as with all event handlers, we as
programmers write the code for the event handler
specific to our needs

Introduction (6):
Validating User Entered Input (cont.)

This is essentially the scheme that we will use in
Visual Basic → lets assume all data will be entered via
a TextBox

As soon as user enters the data in the TextBox
and then focus is shifted from the TextBox to
some other control, provided the CausesValidation
of the other control is set to True, the Validate
event of the TextBox will be called/executed
When the CausesValidation property is False, of
course the Validate event handler is not called

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (7):
Validating User Entered Input (cont.)

The event handler is of course application specific
Can be written to handle any input needs we
require

It is also up to the programmer to determine which
controls will have their CausesValidation property set
so that the Validate event handler is called

Up to the programmer to write the code of the
Validate event handler

Introduction (8):
Validating User Entered Input (cont.)

Lets take a closer look at the Validate event handler

Private Sub Text1_Validate(Cancel As Boolean)

…

End Sub

Contains an argument called “Cancel” of type Boolean
If the data entered by the user is invalid, then set
“Cancel” to True (this tells VB that focus should
remain on the TextBox since user needs to re-
enter data) otherwise set it to False

Some Notes (1):
Multiple Validate Event Handlers

What happens if we have multiple controls for user to
enter data (e.g., multiple TextBoxes) – which Validate
event handler is called ?

The validate event handler for the control that
last had focus

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Data Validation Example (1):
Lets Look at an Example

Simple program that converts number grades
(percent) into corresponding letter grades

User enters numeric grade, presses button and letter
grade is given

User enters
numeric grade

After pressing
button, numeric

grade is converted to
letter grade

Data Validation Example (2):
Lets Look at an Example (cont.)

So we want to basically ensure that the user entered
data is a number between 0 and 100

We will set the CausesValidation property of the
“Get Letter Grade” button control to True so that
once it obtains focus (e.g., the user presses it), we
call the Validate event handler of the TextBox
(the one user enters the data in)
Of course we must provide the implementation
(e.g., relevant statements) for the Validate event
handler!

Data Validation Example (3):
Lets Look at an Example (cont.)

Set CausesValidation property of the button to True
But there is also the “Exit” button and the default
for its CausesValidation property is also True
indicating that we will validate user input upon
pressing it → is this really necessary ? NO!
Set the CausesValidation property of the “Exit”
button to False

Complete the code for the Validate event handler

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Data Validation Example (4):
Validate Event Handler
Private Sub Text1_Validate(Cancel As Boolean)

Cacel = False

If (IsNumeric(Text1.Text)) Then

Dim value As Integer

value = CInt(Text1.Text)

If ((value < 0) Or (value > 100)) Then

Cancel = True

End If

Else

Cancel = True

End If

End Sub

Miscellaneous Notes

A Look Back at Control Arrays (1):
Additional Property of Control Arrays

Recall that a control array contains a specific number
of elements (e.g., Option control objects)

Every control array also includes a property called
Count

Set up by Visual Basic when you declare the array
Specifies the number of elements the control
array contains
Not visible in the properties window since this
property is not a property of the elements within
the array but rather specific to the array itself

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

A Look Back at Control Arrays (2):
Additional Property of Control Arrays (cont.)

We can use this property as any other property
It is nothing more than a value (number)

Consider the following example
Assume a control array called myOptionArray
The following will allow us to set the “Value”
property of each option control to True

Dim loopIndex As Integer
For loopIndex = 0 To myOptionArray.Count-1

myOptionArray(loopIndex).Value = True
Next

“White-Space” (1):
What is “White-Space” ?

Extra space that we add within our program to
illustrate the program’s structure

Allows to easily locate “blocks” of code (e.g., If
statements, loops, subprograms) within program

For loopIndex = 1 to 100
optionArray(loopIndex) = loopIndex

Next

Makes the code easy to follow/debug/update etc.
especially when you consider very long programs
written by multiple programmers

“White-Space” (2):
How Do We Add “White-Space” ?

No general rule describing how much white-space is
necessary The main point is to be consistent
throughout!

For example, if you decide you will use three
spaces, then use three spaces always to offset all
“blocks” of code

Function myFunction() As Integer
Dim loopIndex As Integer
For loopIndex = 1 To 100

text1.Text = CStr(oopIndex)
Next

End Function

