
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2006 (Section M)
Topic F: External Files and Databases –

Using Classes and Objects
Friday, March 31 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details
Some questions to consider

Writing to a File
Writing to a new file → example program
Appending to an existing file
Modifying a file

Text Files Containing Fields and Records
Overview
Reading/Writing such files

Overview (2):
Error Handling

Detecting and handling run-time errors

Before We Begin

Administrative Details (1):
Exercise 7-6

Due Monday, April 3 2006 before noon

I will be in the Glade Lab today after the lecture

Today’s lecture will cover the material you require

Last Lecture is Monday, April 3
Entire lecture will be review for exam

Bring your questions!

Some Questions to Consider (1):
What is the OpentTextFile method for ?

What does the OpenTextFile method return ?

What is the TextStreamClass ?

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Writing To a File

Overview (1):
Writing to a File May Take Three Different
Forms

1. The file we write to may be a new file
2. The file we write to may be an existing file and we

simply want to append data to the file (e.g., add
data to the end of the file) → the data that was
originally in the file remains the same

3. The file we write to exists and we can write data to
it anywhere → the original data may be modified in
any way (e.g., some of it may be erased, some of it
over-written etc.)

Writing to a New File (1):
Example Program

Develop a program that allows the user to type
text in a TextBox and then save the text to a file

Form in design mode

TextBox with both scroll
bars where user enters text

When button
is pressed,
text saved

to file

Writing to a New File (2):
Example Program (cont.)

The InitDir property should be set to a directory
appropriate to your computer system

Set this during design mode

The Filter and Flags properties will be set during
run-time

The Filter property should be set to text files since
we will be dealing with text files only

cdlSave.Filter = “Text Files (*.txt) | *.txt”

Writing to a New File (3):
Setting The Flags Property

When the common file dialog appears, the user
might specify the name of a new file, choose an
existing file which they wish to over-write or type
the name of an existing file

We can assume the user wishes to create a new
file so if an existing file is specified we can
assume user wishes to replace it
When specifying an existing file, we need to
prompt the user and confirm with them that
they wish to replace/overwrite the file

Writing to a New File (4):
Setting The Flags Property (cont.)

Setting the Flags property
cdlSave.Flags = cdlOFNoverwritePrompt

We have now performed all the set-up
(initialization) for this program and we are now
ready to actually write the data to the file

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Writing to a New File (5):
Displaying the “Save As” Dialog

Since we want to save the file (and not simply open
it), we need to display the “Save As” dialog box

ShowSave method → cdlSave.ShowSave

Writing the Data to a File
We will need references to the FileSystemObject
class and the TextStream class

Of course, we need to create objects for these
references → recall the Set and New keywords!

The FileSystemObject class contains a method
called CreateTextFile

Writing to a New File (6):
Writing the Data to a File (cont.)

Function CreateTextFile(FileName As String,
[Overwrite As Boolean = True],
[Unicode As Boolean = False])
As TextStream
Member of Scripting.FileSystemObject
Create a file as a TextStream

The CreateTextFile method → will create the file
for us (if the file doesn’t exist) or allow us to over-
write data of an existing file if the Overwrite
argument is True (it is by default)

Writing to a New File (7):
Writing the Data to a File (cont.)

Basically, after calling the CreateTextFile method,
it returns a TextStream object to us

Think of the TextStream object as an
abstraction to the actual file itself → no need to
worry about how the data will be written to the
file, we only use the provided methods!
The TextStream object contains a method
called Write → requires a String argument (the
data to be written to the file)

Writing to a New File (8):
Writing the Data to a File (cont.)

Lets look at the Visual Basic code…

Appending Data to a File (1):
Recall → The OpenTextFile Function

Before we begin, lets take a closer look at the
description for the OpenTextFile method

Function OpenTextFile(FileName As String, _
[IOMode As IOMode = ForReading], _
[Create As Boolean = False], _
[Format As Tristate = TristateFalse]) _
As TextStream

Appending Data to a File (2):
Very Similar to Writing Data to a New File

The argument called IOMode has a default value of
ForReading

This argument specifies the mode that the file
has been opened for → ForReading specifies the
file is opened for reading only (e.g., can only read
data form the file and not write to it)

Alternative values are ForWriting and ForAppending
ForWriting → writing data to the file
ForAppending → appending data to a file

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Modifying a File (1):
May Modify Any Portion of the File

Can change and erase any portion of the file

Can also add (append) data to the file

Can add data to any part of the file

Can also read the file as well

Once again, modifying a file in such a manner is
specified via the IOMode argument of the
OpenTextFile

Set the argument value to ForWriting

Files Containing Fields & Records (1):
File Contents Can Be Data In The Form of
Lists of Values

Instead of containing (English) text in sentences and
paragraphs, the file may contain data in the form of
a list of values
As an example, consider a file used in a personal
address/phone book → it may look as follows

Kapralos; Bill; (416) 555-5555; 4700 Keele St.; Toronto

Or in general

last name; first name; phone number; street; city

Files Containing Fields & Records (2):
What is a Record ?

A complete set of information
Composed of fields

Each field in the record contains one piece of
information
Fields within a record are separated by a special
separator character

Typically, we will have some collection of records
within a single file

Simplifying assumption → each line in the file will
contain one record
Each record will contain all fields

Files Containing Fields & Records (3):
Example Records

Phone list → a record is an individual person’s info.
and may have the following general form (where the
separator character is the “;”)

Last name; first name; phone number

Or more specifically

Kapralos; Bill; (416) 555-5555

Files Containing Fields & Records (4):
Example Records
(cont.)

Address book
entries →

Last name first
name phone
number

Separator
character is
“white-space”
between fields

Single record

File → collection of
records, one per line

Files Containing Fields & Records (5):
How Do We Work With Such Files ?

Visual Basic provides the appropriate functions to
access records and the fields of records

To read records form a file
Read one line of a file at a time using the ReadLine
method of the TextStream class → since one
record per line, essentially we are reading one
record at a time
Access the fields of the record using the available
String-related functions

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Files Containing Fields & Records (6):
How Do We Work With Such Files ? (cont.)

To write records to a file (append)
Create the string representing the “new” record
Write the string (hence the record) to the
previously opened file → of course, file has been
opened for appending

Handling Errors

Handling Errors (1):
In The Event of a Run-Time Error

While executing a program, in the event of a run-
time error, Visual Basic generates an object of the
ErrObject class

This always happens however, it is up to us (the
programmers) whether or not we want to actually
handle the error

Whether or not we wish to write the code to take
advantage of the information about the error that
the object provides

Handling Errors (2):
In The Event of a Run-Time Error (cont.)

If we ignore the error
Program will “crash” with a run-time error window
being displayed

If we detect and handle the error
Write code to issue a message alerting the user to
correct the problem

Handling Errors (3):
Detecting and Handling the Error

We can basically handle such errors using nothing
more than a selection statement

If there is no error
proceed normally

otherwise
deal with the error

We use a slightly different syntax than If statement
On Error GoTo lineX

Handling Errors (4):
Detecting and Handling the Error (cont.)

Where, “lineX” is a name we choose that identifies
where the error handling code begins
“On Error GoTo” are Visual Basic keywords

On Error GoTo ErrorHandler
...
normal code (when no error)
...

Exit Sub
ErrorHandler:

code to deal with error

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Handling Errors (5):
Detecting and Handling the Error (cont.)

ErrorHandler is the name denoting where the error
handler code begins

Error handling code must be last part of the sub-
program

Cannot have any “normal” statements after the
error handling code
“Exit Sub” must be the last statement before the
error handling code → causes sub-program to exit
after “normal” code has been executed

Handling Errors (6):
The ErrObject Class

Contains two useful properties
Number → a unique number to describe the error
that was generated
Description → a description of the error

ErrorHandler:
'user pressed Cancel - do nothing
Dim messg As String
messg = Str(Err.Number) & ": " & Err.Description
MsgBox (messg)

