
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2006 (Section M)
Topic E: Subprograms – Functions and Procedures

Monday, March 6 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Topic Overview
Introduction

Subprograms
Introduction

Function subprograms

Function example

Before We Begin

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Administrative Details (1):
Lab Exercise

You should be working on Ex 6-3 this week
Due Monday, March 13

Test 2 Reminder
Wednesday, March 15 2006

Course Drop-Deadline
Last day to withdraw from course is Friday, March 10
2006

Some Questions to Consider (1):
Describe the Replace function

Describe the InStr function

Describe the Len function

Describe the “Mid” function

Topic Overview

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (1):
So Far, Two Alternatives to Sequential
Programming → If Statements and Loops

These are however not the only alternatives!
Another departure from sequential programming is a
sub-program (function, method or procedure)
While executing a set of statements, and call to a
subprogram is encountered, execution of those
statements is interrupted

Execution of subprogram statements occurs and
when subprogram statements have been executed,
return back to original set of statements and
continue at point after call to subprogram

Introduction (2):
We Have Already Encountered Subprograms

We have made use of many subprograms up until this
point, including the following

All the string-related functions → “Mid”, “Len”,
“InStr”, “Replace” etc…
AddItem from the ListBox
Date-related functions
Format function

But up until this point, the subprograms (functions)
have been given to us

We simply use them without worrying about them!

Introduction (3):
Overview of Topic E

We will examine subprograms (functions) in detail
We will learn how to write our own subprograms

Main concepts of the this topic
Abstraction and modularization
Function subprograms
Procedure (or Sub) subprograms
Transferring values via an argument list
The scope of variables

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Subprograms

Introduction (1):
What is a Subprogram ?

A convenient way to encapsulate some computation
that can be then used many times over without
worrying about its implementation

Allows us to ignore how a job is done
All we need to know is what is done (e.g., the
outcome)
Can be used by many other programs as well

Introduction (2):
Why Use Subprograms ?

Separate the performance of some task from the
rest of the program

In designing a large program, its usually best to
“divide and conquer” → break the task down
into a number of pieces, each of which can be
programmed separately
Imagine having to compute some computation
many times → you can replicate the code many
times or you can write the code once within a
function and simply call the function

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (3):
Why Use Subprograms ? (cont.)

Break large sections of code into smaller units
that perform a specific task

By breaking your calculations into smaller tasks
Simplify maintenance that needs to be done to
the program in the future
Make the code easier to read/follow and
troubleshoot

Introduction (4):
Subprograms are “Connected” to the

Program That Calls Them
They must usually use data from the calling
program

Two ways that data from the calling program can
be made available in the subprogram

Transferred to the subprogram via an
argument list (arguments)
Global variables are also accessible within
subprogram

Introduction (5):
Specific Types of Subprograms

We have already encountered various subprograms
Event handlers → called in response to a user
interaction via the GUI (e.g. command1_Click())
Functions → Called whenever it is encountered
during program execution (e.g. Mid(inputTxt,
position, 1))
Methods → a subprogram that is associated
with a particular class/object and in fact the
method can only be called via the object (e.g.,
listBox.AddItem(myString))

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (6):
We Will Divide Subprograms Into Two
Categories

Function Subprograms
Restricted to computing and returning a single
result only
Restricted

Procedure subprogram
More “freedom” to perform “greater”
operations

For the remainder of the lecture, we will focus on
function subprograms

Function Subprograms (1):
Purpose

Calculates a some specific single result
Separate that calculation from the rest of the
program code

Can perform this specific calculation many
times by simply calling function within program
Depending on how the function is defined, it
may also be called within different programs →
the built in functions of VB are an example

Function should do nothing else except calculate a
single result → shouldn’t change object properties
or modify global variables for example

Function Subprograms (2):
Promote Modularization

Functions allow you to separate a well defined
piece of some calculation

That piece of calculation becomes represented
by the name of the function
Think of the larger problem independently of
the piece represented by the function

This is known as modularization
Divide and conquer → dividing the task into
smaller, well defined pieces or modules such
that you can focus your thinking on smaller,
more manageable tasks

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Subprograms (3):
The Result of a Function

A function (subprogram) can only calculate a single
value

The value may be an integer, real number,
string, boolean etc.

A function is essentially an expression and can
therefore be used in the same places that a
variable or expression might be used

For example, a function may be used on the
right hand side of an assignment statement →
myValue= Round()

Function Subprograms (4):
Defining a Function

Syntax

Private Function functionName(argument list) As resultDataType
function body (statements)

End Function

Private, Function, As and End Function
Key words

functionName
The name of the function that you provide
The name should be meaningful and represent
the calculation performed by the function

Function Subprograms (5):
Defining a Function (cont.)

(Argument list)
The argument list is optional however the
parenthesis are not → they must be used even
if there are no arguments

resultDataType
Specifies the data type of the result returned
by the function (e.g., Integer, Single, Double…)

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Subprograms (6):
Defining a Function (cont.)

Function body
Statements that ultimately calculate the result
Must assign the result to the function name →
therefore, within the function body itself, the
following statement must appear

functionName = …

The function name is treated as if it were a
normal variable name
Function body may contain local variable
declarations and may use any global variables

Function Example (1):
Compute a Sum

Consider a function that will compute (and return)
the sum of the numbers in the range 1-100

Function name → computeSum
Arguments → none
Return data type → Integer

Function definition
Private Function computeSum() As Integer

…
End Function

Function Example (2):
Compute a Sum (cont.)

Here is the Visual Basic code for the function

Private Function computeSum() As Integer
Dim loopIndex As Integer
Dim sum As Integer
sum = 0

For loopIndex = 1 To 100
sum = sum + loopIndex

Next
computeSum = sum

End Function

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Example (3):
Compute a Sum (cont.)

Here is another (equivalent) version of the function
What is the difference ?

Private Function computeSum() As Integer
Dim loopIndex As Integer
computeSum = 0

For loopIndex = 1 To 100
computeSum = computeSum + loopIndex

Next
End Function

Function Example (4):
Compute a Sum (cont.)

Lets use the function now
Call it in the button Click event handler

Private Sub btnSum_Click()
Dim sum As Integer
sum = computeSum()
txtSum.Text = sum

End Sub

Output after
pressing button

