
Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

CSE 1530, Winter 2006, Bill Kapralos

Winter 2006 (Section M)
Topic E: Subprograms – Functions and Procedures

Wednesday, March 8 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Function Subprogram (Cont. From Last

Lecture)
Function argument list

Procedure (or Sub) Subprogram
Introduction

Example

Before We Begin

Administrative Details (1):
Lab Exercise

You should be working on Ex 6-3 this week
Due Monday, March 13

Straightforward and simple but you will need Ex. 5-1
so if you haven’t completed it, you should! (Ex. 5-1 is
also simple)

Test 2 Reminder
Wednesday, March 15 2006

Course Drop-Deadline
Last day to withdraw is Friday, March 10 2006

Some Questions to Consider (1):
What is a subprogram ?

How many “different types” of subprograms will we
consider ? And what are they ?

Why use a subprogram ?

What is the syntax of a function ?

How can we treat the function name within the body of
the function ?

What must we do to the function name within the body
of the function ?

Function Subprogram
(cont.)

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Argument List (1):
Passing Values to Subprograms

There are times where we need provide certain values
to a function in order for the function to complete its
task

For example → the Format function requires two
arguments: the value to be formatted and the
format type – without these arguments, it cannot
complete its task!

Can you think of a way where we can have a function
that requires certain values from the caller but does
not take any arguments ?

Function Argument List (2):
Passing Values to Subprograms (cont.)

How about using global variables instead and simply
have the function modify the global variables ?

This is bad practice → basically goes against the
purpose of modularization!
The function now needs to access the global
variables and may now be difficult to use across
multiple programs
So given above considerations, we will make use of
arguments!

Function Argument List (3):
Argument List in Greater Detail

Any arguments we pass must have a name and be of
specific data type

This of course does make sense since every value
we use in VB is of a specific type
Keep in mind that the argument does not have to
be the same name as the variable that is passed

Function Argument List (4):
Argument List in Greater Detail (cont.)

An argument list is like a variable declaration with
two differences

Syntax doesn’t include the word “Dim” or “Private”
The argument has a value whenever the function is
executed → the argument will have been assigned
the value of whatever argument is specified when
the function is called therefore, the function may
use this value directly without having to assign the
argument a value itself since it already has been
supplied a value when the function is called

Function Argument List (5):
Argument List in Greater Detail

Although the arguments do not have the key word
“Private” or “Dim”, each argument of the argument
list is either passed by value or passed by reference

Each argument can also be preceded by the key
word ByVal (for arguments passed by value) or
ByRef (for arguments passed by reference)

Consider the following

Private Function myFunction(ByVal value1 As Integer, _
ByRef value2 As Single)

Private Function myFunction(ByRef value1 As Integer, _
ByRef value2 As Single)

Function Argument List (6):
Argument List in Greater Detail (cont.)

Basically, when we send an argument to a function we
can either send a copy of the value we specify in the
argument list when calling the function or we send
the actual value itself (e.g., the actual variable or
memory address which stores the value)

When we send a copy, this is known as “call by
value” → ByVal in Visual Basic
When we send the value itself, this is known as
“call by reference” → ByRef in Visual Basic

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Argument List (7):
Call By Value (ByVal)

This is default for functions and if ByVal or ByRef
not specified then it is assumed it is call by value

Do not have to explicitly provide the “ByVal”
keyword when declaring functions

Consider the following function that takes a single
argument ByVal

Private Function computeSum(ByVal value As Integer) As Integer
…

Dim myValue As Integer
computeSum(myValue)

Function Argument List (8):
Call By Value (ByVal) (Cont.)

Since the single argument has been declared ByVal in
the function declaration, we call the function but
before the function is actually called, a copy of the
value represented by the variable “myValue” is
created and actually passed rather than the actual
variable itself

Within the function itself, even if the argument is
altered, since we are dealing with a copy of the
original variable, there will be no effect to the
original variable

Function Argument List (9):
Call By Value (ByVal) (cont.)

Consider the following code segment
What value will be displayed in the textbox ?

Private Function computeSum(ByVal value As Integer) As Integer
value =5000
…

End Function

Dim myValue As Integer
myValue = 1000
computeSum(myValue)
Text1.Text = CStr(myValue)

Function Argument List (10):
Call By Value (ByVal) (cont.)

Graphical illustration of previous example

Computer memory

1000

5000

Computer memory

1000

1000

Memory location
of variable
“myValue”

Copy of “myValue”
represented by
variable “value”

that is passed to
the function Value of

“value”
after

function has
executed

Memory
location of

variable
“myValue” is
unaltered

after function
call

Function Argument List (11):
Call By Reference (ByRef)

Consider the following function that takes a single
argument ByRef

Private Function computeSum(ByRef value As Integer) As Integer

…

Dim myValue As Integer

computeSum(myValue)

Function Argument List (12):
Call By Reference (ByRef) (Cont.)

Since the single argument has been declared ByRef in
the function declaration, when we call the function,

the actual value represented by the variable is passed
to the function and not a copy of the value!

Within the function itself, since we do not have a
copy of the variable but rather access the actual
memory space that holds the variable’s value, we
can make changes that are visible even after the
function returns!

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Function Argument List (13):
Call By Reference (ByRef) (cont.)

Consider the following code segment
What value will be displayed in the textbox ?

Private Function computeSum(ByRef value As Integer) As Integer
value = 5000
…

End Function

Dim myValue As Integer
myValue = 1000
computeSum(myValue)
Text1.Text = CStr(myValue)

Function Argument List (14):
Call By Reference (ByRef) (cont.)

Graphical illustration of previous example

Computer memory

1000Memory location
of variable
“myValue”

Memory location
of value passed to
the function we

call

Memory
location of

variable
“myValue”
after we

return from
the function –

it has now
changed!

Computer memory

5000

Function Argument List (15):
Specifying Multiple Arguments

As you are probably already aware, a function’s
argument list may have either zero, one or more than
one arguments

When there is more than one argument, for each
argument, we can specify whether it is call by
value or reference, the argument name and the
argument type (ByVal is default)
Separate multiple arguments by a comma

Private Function computeSum(ByVal value1 As Integer, _

ByVal value2 As Integer, ByRef value3 As Integer)

Function Argument List (16):
Some Notes

Recall that in a function, we compute and return a
single value after performing some operations

We shouldn’t modify any variables of the calling
program within the function or any object properties
etc.

Therefore, values to functions will typically be
“call by value” (e.g., ByVal)
Since ByVal is default, no need to explicitly
specify it and usually, for functions we do not
specify it

Procedure (or Sub)
Subprograms

Introduction (1):
What is a Procedure Subprogram ?

Recall → function computes and returns a single value

In contrast to a function, a procedure subprogram
does not return a single result

Purpose is to perform some section of a larger task
It is said to perform some specific “sub-task” that
is part of a larger task
Much broader role than that of a function

Visual Basic syntax uses the key word Sub for
defining this type of subprogram

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Introduction (2):
What is a Procedure Subprogram ? (cont.)

Will generally use data available from the program
that calls it and usually the data is passed via an
argument list

Unlike a function, the values of one or more of its
arguments may be changed
When the execution of the procedure is complete,
the new values assigned to the arguments become
the value of the corresponding arguments in the
calling statement
Can also use/change the properties of objects
(including control objects) if necessary

Introduction (3):
Defining a Procedure

Very similar to a function definition except
No return data type specified therefore, no return
value by a procedure
No need to assign a value to the procedure name as
done with functions

Procedure syntax

Private Sub procedureName(argumentList)
…
procedure body
…

End Sub

Introduction (4):
Defining a Procedure (cont.)

Private Sub procedureName(argumentList)

…

procedure body

…

End Sub

Private, Sub, End Sub
Keywords that are required

procedureName
The name you assign to the procedure

Introduction (5):
Defining a Procedure (cont.)

Private Sub procedureName(argumentList)
…
Procedure body
…

End Sub

Procedure body
Visual basic statements

Argument list
A list of arguments that you pass to the procedure
Same as functions except we must specify ByVal
or ByRef for each argument

Introduction (6):
Using (Calling) a Procedure

Similar to calling a function but some slight
differences → “call” the procedure with its name and
any arguments if required BUT

If the procedure takes no arguments, unlike calls
to functions, parenthesis are not needed when
making the call to it → if you do use them, it may
lead to an error
Precede the procedure call with the keyword Call
(not always necessary depending on whether the
procedure has arguments) so good idea to use it!

The following example will illustrate this

Procedure Example (1):
Compute a Sum (Same as Last Lecture)

Consider a function that will compute the sum of
the numbers in the range 1-100 and place result in a
Textbox

Procedure name → computeSum
Arguments → none
Return data type → none since a procedure!

Procedure definition
Private Sub computeSum()

…
End Sub

Introduction to Computer Use II

CSE 1530 Winter 2006

Bill Kapralos

Procedure Example (2):
Compute a Sum (cont.)

Here is another (equivalent) version of the function
What is the difference ?

Private Sub computeSum()
Dim loopIndex As Integer
Dim sum
sum = 0

For loopIndex = 1 To 100
sum = sum + loopIndex

Next
txtSum.Text = CStr(sum)

End Sub

Procedure Example (3):
Compute a Sum (cont.)

Lets use the function now
Call it in the button Click event handler

Private Sub btnSum_Click()
Call computeSum

End Sub
or
Private Sub btnSum_Click()

Call computeSum()
End Sub

Output after
pressing button

Final Note (1):
Practice Writing Your Own Functions and

Procedures
Both with and without arguments

Practice calling them as well

