298

Chapter 6 Control Flow

Fortran, for example, we can limit the use of gotos to patterns that mimic the
control flow of more modern languages. In languages without short-circuit eval-
uation, we can write nested selection statements. In languages without iterators,
we can write sets of subroutines that provide equivalent functionality.

Exercises

6. We noted in Section 6.1.1 that most binary arithmetic operators are left-
associative in most programming languages. In Section 6.1.4, however, we
also noted that most compilers are free to evaluate the operands of a binary
operator in either order. Are these statements contradictory? Why or why
not?

6.2 As noted in Figure 6.1, Fortran and Pascal give unary and binary minus the
same level of precedence. Is this likely to lead to nonintuitive evaluations of
certain expressions? Why or why not?

6.3 Translate the following expression into postfix and prefix notation:
[—b+sqrtbxb—4xaxc)l]/(2xa)

Do you need a special symbol for unary negation?

6.4 In Lisp, most of the arithmetic operators are defined to take two or more ar-
guments, rather than strictly two. Thus (x 2 3 4 5) evaluates to 120,

(- 16 9 4) evaluates to 3. Show that parentheses are necessary to dis
biguate arithmetic expressions in Lisp (in other words, give an example

an expression whose meaning is unclear when parentheses are removed).

In Section 6.1.1 we claimed that issues of precedence and associativity

not arise with prefix or postfix notation. Reword this claim to make expli

the hidden assumption.

6.5 Example 6.31 claims that “For certain values of x, (0.1 + x) * 10.0
1.0 + (x * 10.0) can differ by as much as 25%, even when 0.1 and =
of the same magnitude.” Verify this claim. (Warning: If you're using an
processor, be aware that floating-point calculations [even on single pr
sion variables] are performed internally with 80 bits of precision. Roun
errors will appear only when intermediate results are stored out to me
[with limited precision] and read back in again.)

6.6 Languages that employ a reference model of variables also tend to em
automatic garbage collection. Is this more than a coincidence? Explain.

6.7 In Section 6.1.2 we noted that C uses = for assignment and == for eq
testing. The language designers state “Since assignment is about twice
frequent as equality testing in typical C programs, it’s appropriate that
operator be half as long” [KR88, p. 17]. What do you think of this ratio;



398

Chapter 7 Data Types

troduced at least in part for the sake of efficient implementation. These i
packed types, multilength numeric types, with statements, decimal arithms
and C-style pointer arithmetic.
At the same time, one can identify a growing willingness on the part of §
guage designers and users to tolerate complexity and cost in language imple:
tation in order to improve semantics. Examples here include the type-safe
records of Ada; the standard-length numeric types of Java and C#; the va
length strings and string operators of Icon, Java, and C#; the late binding of as
bounds in Ada; and the wealth of whole-array and slice-based array operatic
Fortran 90. One might also include the polymorphic type inference of ML. s
tainly one should include the trend toward automatic garbage collection. O=
considered too expensive for production-quality imperative languages, ga
collection is now standard not only in such experimental languages as Clu
Cedar, but in Ada, Modula-3, Java, and C# as well. Many of these features, inclu
ing variable-length strings, slices, and garbage collection, have been embraced &

scripting languages.

Exercises

1.1 Most modern Algol-family languages use some form of name equivalenc
for types. Is structural equivalence a bad idea? Why or why not?

1.2 In the following code, which of the variables will a compiler consider to
compatible types under structural equivalence? Under strict name eq
lence? Under loose name equivalence?

type T = array [1..10] of integer

S=T
A T
B2k
G S
D : array [1..10] of integer

1.3 Consider the following declarations.

1. type cell ——a forward declaration
2. type cell_ptr = pointer to cell

3. x:cell

4. type cell = record

5 val : integer

6 next . cell_ptr

7. y:cell

Should the declaration at line 4 be said to introduce an alias type? Under
strict name equivalence, should x and y have the same type? Explain.

LI g _—



7.12 Exercises 401

1.14 We noted in Section 7.3.4 that Pascal and Ada require the variant portions

1.15

1.16

1.17

1.18

1.19

1.20

of a record to occur at the end, to save space when a particular record is
constrained to have a comparatively small variant part. Could a compiler
rearrange fields to achieve the same effect, without the restriction on the
declaration order of fields? Why or why not?

Give Ada code to map from lowercase to uppercase letters, using

(a) anarray
(b) a function

Note the similarity of syntax: in both cases upper(*a’) is ’A’.

In Section 7.4 we discussed how to differentiate between the constant and
variable portions of an array reference, in order to efficiently access the sub-
parts of array and record objects. An alternative approach is to generate
naive code and count on the compiler’s code improver to find the constant
portions, group them together, and calculate them at compile time. Discuss
the advantages and disadvantages of each approach.

Explain how to extend Figure 7.7 to accommodate subroutine arguments
that are passed by value, but whose shape is not known until the subroutine
is called at run time.

Explain how to obtain the effect of Fortran 90’s allocate statement for
one-dimensional arrays using pointers in C. You will probably find that your
solution does not generalize to multidimensional arrays. Why not? If you are
familiar with C++, show how to use its class facilities to solve the problem.

Consider the following C declaration, compiled on a 32-bit Pentium ma-
chine.

struct {
int mn;
char c;

} A[10][10];

If the address of A[0] [0] is 1000 (decimal), what is the address of A[3] [7]?
Consider the following Pascal variable declarations.

var A : array [1..10, 10..100] of real;
i : integer;
X : real;

Assume that a real number occupies eight bytes and that 4, i, and x are
global variables. In something resembling assembly language for a RISC ma-
chine, show the code that a reasonable compiler would generate for the fol-
lowing assignment: x := A[3,1i]. Explain how you arrived at your answer.

e S e S

"iwm i .;.i;i.il

ﬁﬂhhﬁﬁﬁﬁi_:

i



7 Data Types

121

122

1.3

1.24

Suppose A is a 10 x 10 array of (4-byte) integers, indexed from [0]]
through [9][9]. Suppose further that the address of A is currently in r
ister r1, the value of integer i is currently in register r2, and the value
integer j is currently in register r3.

Give pseudo-assembly language for a code sequence that will load
value of A[i] [j] into register r1 (a) assuming that A is implemented
ing (row-major) contiguous allocation; (b) assuming that A is implemen
using row pointers. Each line of your pseudocode should correspond to
single instruction on a typical modern machine. You may use as many r
isters as you need. You need not preserve the values in r1, r2, and r3. ¥i
may assume that i and j are in bounds, and that addresses are 4 bytes long.

Which code sequence is likely to be faster? Why?

In Examples 7.69 and 7.70, show the code that would be required to access
Ali, j, k] if subscript bounds checking were required.

Pointers and recursive type definitions complicate the algorithm for deter-
mining structural equivalence of types. Consider, for example, the following
definitions.

type A = record
X . pointer to B
y : real

type B = record
X : pointer to A
y : real

The simple definition of structural equivalence given in Section 7.2.1 (ex-
pand the subparts recursively until all you have is a string of built-in types
and type constructors; then compare them) does not work: we get an infi-
nite expansion (type A = record x : pointer to record x : pointer to record x -
pointer to record ... ). The obvious reinterpretation is to say two types A and
B are equivalent if any sequence of field selections, array subscripts, pointer
dereferences, and other operations that takes one down into the structure
of A, and that ends at a built-in type, always ends at the same built-in type
when used to dive into the structure of B (and encounters the same field
names along the way). Under this reinterpretation, A and B above have the
same type. Give an algorithm based on this reinterpretation that could be
used in a compiler to determine structural equivalence. (Hint: The fastest
approach is due to J. Kral [Krd73]. It is based on the algorithm used to find
the smallest deterministic finite automaton that accepts a given regular lan-
guage. This algorithm was outlined in Example 2.13 [page 53]; details can
be found in any automata theory textbook [e.g., [HMUO01]].)

Explain the meaning of the following C declarations.

double *a[n];
double (*b) [n];




1.25

1.26

121

1.28

129

130

7.12 Exercises 403

double (*c[n])();
double (*d())[n];

In Ada 83, as in Pascal, pointers (access variables) can point only to objects
in the heap. Ada 95 allows a new kind of pointer, the access all type, to
point to other objects as well, provided that those objects have been declared
to be aliased:

type int_ptr is access all Integer;
foo : aliased Integer;
ip : int_ptr;

ip := foo’Access;

The ?Access attribute is roughly equivalent to C’s “address of” (&) oper-
ator. How would you implement access all types and aliased objects?
How would your implementation interact with automatic garbage collec-
tion (assuming it exists) for objects in the heap?

As noted in Section 7.7.2, Ada 95 forbids an access all pointer from re-
ferring to any object whose lifetime is briefer than that of the pointer’s type.
Can this rule be enforced completely at compile time? Why or why not?

In the discussion of pointers in Section 7.7, we assumed implicitly that every
pointer into the heap points to the beginning of a dynamically allocated
block of storage. In some languages, including Algol 68 and C, pointers may
also point to data inside a block in the heap. If you were trying to implement
dynamic semantic checks for dangling references or, alternatively, automatic
garbage collection, how would your task be complicated by the existence of
such “internal pointers”?

(a) A tracing garbage collector in a typesafe language can find and re-
claim all unreachable objects. It will not necessarily reclaim all useless
objects—those that will never be used again. Explain.

(b) With future technology, might it be possible to design a garbage collec-
tor that will reclaim all useless objects? Again, explain.

(a) Occasionally one encounters the suggestion that a garbage-collected
language should provide a delete operation as an optimization: by ex-
plicitly delete-ing objects that will never be used again, the program-
mer might save the garbage collector the trouble of finding and reclaim-
ing those objects automatically, thereby improving performance. What
do you think of this suggestion? Explain.

(b) Alternatively, one might allow the programmer to “tenure” an object,
so that it will never be a candidate for reclamation. Is this a good idea?

In Example 7.96 we noted that reference counts can be used to reclaim
tombstones, failing only when the programmer neglects to manually delete




