96

E

Chapter 2 Programming Language Syntax

Both scanners and parsers can be built by hand if an automatic tool is
not available. Hand-built scanners are simple enough to be relatively common.
Hand-built parsers are generally limited to top-down recursive descent, and are
generally used only for comparatively simple languages (e.g., Pascal but not
Ada). Automatic generation of the scanner and parser has the advantage of in-
creased reliability, reduced development time, and easy modification and en-
hancement.

Various features of language design can have a major impact on the complex-
ity of syntax analysis. In many cases, features that make it difficult for a compiler
to scan or parse also make it difficult for a human being to write correct, main-
tainable code. Examples include the lexical structure of Fortran and the if...
then ... else statement of languages like Pascal. This interplay among language
design, implementation, and use will be a recurring theme throughout the re-
mainder of the book.

Exercises

1| Write regular expressions to capture

(a) Strings in C. These are delimited by double quotes ("), and may not
contain newline characters. They may contain double quote or backslash
characters if and only if those characters are “escaped” by a preceding
backslash. You may find it helpful to introduce shorthand notation to
represent any character that is not a member of a small specified set.

(b) Comments in Pascal. These are delimited by (* and *), as shown in
Figure 2.6, or by { and }.

() Floating-point constants in Ada. These are the same as in Pascal (see
the definition of unsigned_number in Example 2.2 [page 41]), except that
(1) an underscore is permitted between digits, and (2) an alternative
numeric base may be specified by surrounding the non-exponent part
of the number with pound signs, preceded by a base in decimal (e.g.,
16#6.a7#e+2). In this latter case, the letters a .. £ (both upper- and low-
ercase) are permitted as digits. Use of these letters in an inappropriate
(e.g., decimal) number is an error but need not be caught by the scan-
ner.

(d) Inexactconstantsin Scheme. Scheme allows real numbers to be explicitly
inexact (imprecise). A programmer who wants to express all constants
using the same number of characters can use sharp signs (#) in place
of any lower-significance digits whose values are not known. A base-ten
constant without exponent consists of one or more digits followed by
zero of more sharp signs. An optional decimal point can be placed at the
beginning, the end, or anywhere in between. (For the record, numbers
in Scheme are actually a good bit more complicated than this. For the

Bill Kapralos
Exercises reprinted from "Programming Language Pragmatics" 2nd edition by Michael L. Scott.

Course CSE 3301: Programming Language Fundamentals - Summer 2006
York University, Dept. of Computer Science and Engineering

11

23

24

2.5

1.6

N

18

2.6 Exercises 97

purposes of this exercise, please ignore anything you may know about
sign, exponent, radix, exactness and length specifiers, and complex or
rational values.)

(¢) Financial quantities in American notation. These have a leading dollar
sign ($), an optional string of asterisks (*—used on checks to discourage
fraud), a string of decimal digits, and an optional fractional part consist-
ing of a decimal point (.) and two decimal digits. The string of digits to
the left of the decimal point may consist of a single zero (0). Otherwise
it must not start with a zero. If there are more than three digits to the
left of the decimal point, groups of three (counting from the right) must
be separated by commas (,). Example: $x%2,345.67. (Feel free to use
“productions” to define abbreviations, so long as the language remains
regular.)

Show (as “circles-and-arrows” diagrams) the finite automata for parts (a)
and (c) of Exercise 2.1.

Build a regular expression that captures all nonempty sequences of letters
other than file, for, and from. For notational convenience, you may
assume the existence of a not operator that takes a set of letters as argument
and matches any other letter. Comment on the practicality of constructing
a regular expression for all sequences of letters other than the keywords of
a large programming language.

() Show the NFA that results from applying the construction of Figure 2.8
to the regular expression letter (letter | digit)*.

(b) Apply the transformation illustrated by Example 2.12 to create an equiv-
alent DFA,

() Apply the transformation illustrated by Example 2.13 to minimize the
DFA.

Build an ad hoc scanner for the calculator language. As output, have it print
a list, in order, of the input tokens. For simplicity, feel free to simply halt in
the event of a lexical error.

Build a nested-case-statements finite automaton that converts all letters
in its input to lowercase, except within Pascal-style comments and strings.
A Pascal comment is delimited by { and }, or by (* and *). Com-
ments do not nest. A Pascal string is delimited by single quotes (* ... 7).
A quote character can be placed in a string by doubling it (’Madam, I’’m
Adam.). This upper-to-lower mapping can be useful if feeding a program
written in standard Pascal (which ignores case) to a compiler that considers
upper- and lowercase letters to be distinct.

Give an example of a grammar that captures right associativity for an ex
ponentiation operator (e.g., ** in Fortran).

Prove that the following grammar is LL(1).

98 Chapter 2 Programming Language Syntax

2.9

2.10

211

2.12

decl — ID decl_tail
decl_taill — , decl

— : ID ;

(The final ID is meant to be a type name.)

Consider the following grammar.

G — S 3%
S — AM
M — S |e
A— aE|bAA
E—> aB|bA|e
B— bE|aBB

(3 Describe in English the language that the grammar generates.
(b) Show a parse tree for the stringa b a a.

(¢) Isthe grammar LL(1)? If so, show the parse table; if not, identify a pre-
diction conflict.

Consider the language consisting of all strings of properly balanced paren-

theses and brackets.

(a3) Give LL(1) and SLR(1) grammars for this language.

(b) Give the corresponding LL(1) and SLR(1) parsing tables.
() For each grammar, show the parse tree for ([1([1)) [1(0).

(d) Give a trace of the actions of the parsers on this input.

Give an example of a grammar that captures all the levels of precedence
for arithmetic expressions in C. (Hint: This exercise is somewhat tedious.
You probably want to attack it with a text editor rather than a pencil, so
you can cut, paste, and replace. You can find a summary of C precedence
in Figure 6.1 [page 237]; you may want to consult a manual for further
details.)

Extend the grammar of Figure 2.24 to include if statements and while
loops, along the lines suggested by the following examples.

abs :=n
if n < 0 then abs := 0 - abs fi

sum := 0
read count
while count > 0 do

read n
sum := sum + n
count := count - 1
od
write sum

152 Chapter 3 Narmes, Scopes, and Bindings

33

34

3.5

3.6

Give two examples in which it might make sense to delay the binding of an
implementation decision, even though sufficient information exists to bin
it early.

Give three concrete examples drawn from programming languages with
which you are familiar in which a variable is live but not in scope.

Consider the following pseudocode, assuming nested subroutines and static
scope.

procedure main
g : integer

procedure Bla : integer)
X : integer
procedure A(n : integer)
g:=n
procedure R(m : integer)

write_integer(x)
x [:= 2 — integer division

ifx>1
R(m + 1)
else
Alm)
—— body of B
Ni=Zdxa
R(1)
—— body of main

B(3)
write.integer(g)

(2) What does this program print?
(b) Show the frames on the stack when A has just been called. For each
- frame, show the static and dynamic links.

() Explain how A finds g.
As part of the development team at MumbleTech.com, Janet has written a

list manipulation library for C that contains, among other things, the code
in Figure 3.18.

(a) Accustomed to Java, new tearn member Brad includes the following
code in the main loop of his program.

list_node *L = 0;
while (more_widgets()) {
insert (next_widget(), L);

}
L = reverse(L);

154

Chapter 3 Names, Scopes, and Bindings

3.1 Rewrite Figures 3.7 and 3.8 in C.

3.8 Modula-2 provides no way to divide the header of a module into a pu
part and a private part: everything in the header is visible to the users
the module. Is this a major shortcoming? Are there disadvantages to
public/private division (e.g., as in Ada)? (For hints, see Section 9.2.)

3.9 Consider the following fragment of code in C.

{ int a, b, c;
{ int d, e;
{ int f;

}
{ int g, h, i;

}

Assume that each integer variable occupies four bytes. How much total space
is required for the variables in this code? Describe an algorithm that a com-
piler could use to assign stack frame offsets to the variables of arbitrary
nested blocks, in a way that minimizes the total space required.

3.10 Consider the design of a Fortran 77 compiler that uses static allocation for
the local variables of subroutines. Expanding on the solution to the previ-
ous question, describe an algorithm to minimize the total space required
for these variables. You may find it helpful to construct a call graph data
structure in which each node represents a subroutine and each directed arc
indicates that the subroutine at the tail may sometimes call the subroutine
at the head.

3.1 Consider the following pseudocode.

procedure P(A, B : real)
X : real

procedure Q(B, C : real)
Y :real

procedure R{A, C : real)
Z : real
- (*)

3.12

3.13

3.14

3.15

3.9 Exercises 155

Assuming static scope, what is the referencing environment at the location
marked by (*)?

Write a simple program in Scheme that displays three different behaviors,
depending on whether we use let, let#*, or letrec to declare a given set
of names. (Hint: To make good use of letrec, you will probably want your
names to be functions [1ambda expressions].)

Consider the following pseudocode.

X : integer ——global

procedure set_x(n : integer)
X=n

procedure printx
write_integer(x}

procedure first
setx(1)
print_x

procedure second
X @ integer
setx(2)
print_x

setx(0)
first()
print_x
second()
print_x

What does this program print if the language uses static scoping? What does
it print with dynamic scoping? Why?

Consider the programming idiom illustrated in Example 3.20. One of the
reviewers for this book suggests that we think of this idiom as a way to im-
plement a central reference table for dynamic scope. Explain what is meant
by this suggestion.

If you are familiar with structured exception-handling, as provided in Ada,
Modula-3, C++, Java, C#, ML, Python, or Ruby, consider how this mecha-
nism relates to the issue of scoping. Conventionally, a raise or throw state-
ment is thought of as referring to an exception, which it passes as a parame-
ter to a handler-finding library routine. In each of the languages mentioned,
the exception itself must be declared in some surrounding scope, and is sub-
ject to the usual static scope rules. Describe an alternative point of view, in
which the raise or throw is actually a reference to a handler, to which it
transfers control directly. Assuming this point of view, what are the scope
rules for handlers? Are these rules consistent with the rest of the language?
Explain. (For further information on exceptions, see Section 8.5.)

156

Chapter 3 Names, Scopes, and Bindings

3.16 Consider the following pseudocode.

3.17

X : integer —— global

procedure setx{n : integer)
XaEn

procedure print_x
write_integer(x)

procedure fool(S, P : function; n : integer)
X :integer:=5
ifnin {1, 3}
setx(n)
else
Sin)
ifnin {1, 2}
print_x
else
P

setx(0); foolsetx, printx, 1); print_x
setx(0); foolset_x, print_x, 2); print_x
setx(0); foolset_x, printx, 3); printx
setx(0); foolsetx, printx, 4); print_x

Assume that the language uses dynamic scoping. What does the progr
print if the language uses shallow binding? What does it print with de
binding? Why?

Consider the following pseudocode.

X :integer =1
y :integer := 2

procedure add
XI=X+Y

procedure second(P : procedure)
X :integer =2
P

procedure first
y :integer ;= 3
second(add)

first()
write_integer(x)

(a) What does this program print if the language uses static scoping?

B R I I R R TR R RS =

224

Chapter 5 Target Machine Architecture

5.6

5.1

5.8

52

5.10

op € {<, <, =, #, >, =}. Suppose we subtract B from A, using two’s com-
plement arithmetic. For each of the six conditions, indicate the logical com-
bination of condition-code bits that should be used to trigger the branch.
Repeat the exercise on the assumption that A and B are signed, two’s com-
plement numbers.

We implied in Section 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruc-
tion is (to first approximation) independent of the time required to execute
all other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

Suppose that loads constitute 25% of the typical instruction mix on a cer-
tain machine. Suppose further that 15% of these loads miss in the on-chip
(primary) cache, with a penalty of 40 cycles to reach main memory. What
is the contribution of cache misses to the average number of cycles per in-
struction? You may assume that instruction fetches always hit in the cache.
Now suppose that we add an off-chip (secondary) cache that can satisfy 90%
of the misses from the primary cache, at a penalty of only 10 cycles. What is
the effect on cycles per instruction?

Many recent processors provide a conditional move instruction that copies
one register into another if and only if the value in a third register is (or is
not) equal to zero. Give an example in which the use of conditional moves
leads to a shorter program.

The 64-bit AMD Opteron architecture is backward compatible with the x86
instruction set, just as the x86 is backward compatible with the 16-bit 8086
instruction set. Less transparently, the [A-64 Itanium is capable of running
legacy x86 applications in “compatibility mode.” But recent members of the
ARM and MIPS processor families support new 16-bit instructions as an
extension to the architecture. Why might designers have chosen to introduce
these new, less powerful modes of execution?

Consider the following code fragment in pseudo-assembler notation.

E =K

2: rd = &A

3. 6 := &B

4. ”:=rIx4

5. B3:=rd+r12

6. 3:="3 —- load (register indirect)
7 5= *(r3+12) --load (displacement)
8. r3:=r16+r12

9. r3:=*3 —— load (register indirect)
10 17 :=*(3+12) —-load (displacement)
11. r3:=rb+r17

12. =13 —— store

5.11

5.12

5.13

5.14

5.15

5.7 Exercises 225

(a) Give a plausible explanation for this code (what might the correspond-
ing source code be doing?).

(b) Identify all flow, anti-, and output dependences.

() Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

d) Can vou do better if you rename registers?
V! 3 g

With the development of deeper, more complex pipelines, delayed loads and
branches have become significantly less appealing as features of a RISC in-
struction set. Why is it that designers have been able to eliminate delayed
loads in more recent machines, but have had to retain delayed branches?

Some processors, including the PowerPC and recent members of the
x86 family, require one or more cycles to elapse between a condition-
determining instruction and a branch instruction that uses that condition.
‘What options does a scheduler have for filling such delays?

Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which way
the branch will usually go, encodes this guess in the instruction, and sched-
ules instructions for the expected path. In the dynamic approach, the hard-
ware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Sup-
pose that in a typical program 20% of the instructions are conditional
branches, which the compiler or hardware manages to predict correctly 75%
of the time. What is the impact of incorrect predictions on the average
number of cycles per instruction? Suppose the accuracy of branch predic-
tion can be increased to 90%. What is the impact on cycles per instruc-
tion?

Suppose that the number of cycles per instruction would be 1.5 with
perfect branch prediction. What is the percentage slowdown caused by mis-
predicted branches? Now suppose that we have a superscalar processor on
which the number of cycles per instruction would be 0.6 with perfect branch
prediction. Now what is the percentage slowdown caused by mispredicted
branches? What do your answers tell you about the importance of branch
prediction on superscalar machines?

Consider the code in Figure 5.6. In an attempt to eliminate the remaining
delay and reduce the overhead of the bookkeeping (loop control) instruc-
tions, one might consider unrolling the loop—that is, creating a new loop in
which each iteration performs the work of k iterations of the original loop.
Show the code for k = 2. You may assume that # is even and that your target

