
Programming Language Fundaemntals

CSE 3301 Summer 2006

Bill Kapralos

CSE 3301 Summer 2006, Bill Kapralos

Summer 2006

Administrative Details
Monday, July 17 2006

Bill Kapralos

Course Preliminaries (1):
Instructor: Bill Kapralos

Email: billk@cs.yorku.ca

Office hours: Tuesday 4:00-5:00pm Room CSE 2015

Thursday 4:00-5:00pm Room CSE 2015

Textbook: Programming Language Pragmatics. 2nd edition. By
Michael L. Scott. 2006, Morgan Kaufmann
Publishers. ISBN: 0-12-633951-1

Course Preliminaries (2):
Official course website:

http://www.cs.yorku.ca/~billk/cse3301_S06/ge
neralInfo.html

Check course website regularly as all course
related

information will be conveyed via the course
website, including

assignments, announcements etc.

Lecture notes will be made available her I

Course Preliminaries (3):
Tentative Grading Scheme:

Mid-term test 30%
Final test 30%
Exercises 40%

There will be three exercises:
Exercise One 10%
Exercise Two 15%
Exercise Three 15%

Prism Lab (1):
Course is Essentially Theoretically Based

No explicit need for the lab is required
Won’t really need to produce any significant code
→ although you may have to produce some code
fragments etc. and a computer may be useful…

If you do not have a Prism account, you need to
contact the Tech staff

Do so immediately so you can access the course
website etc. → of course, you can also access the
website on your own computer from home…

Obtaining Help (1):
Various Ways to Obtain Help

Instructor office hours → please take advantage of
the opportunity to approach me!

Instructor will also respond to e-mail questions at
times other than his/her office hours, although the
reply will necessarily come after a short delayed →
make use of e-mail!

Programming Language Fundaemntals

CSE 3301 Summer 2006

Bill Kapralos

A Notes (1):
Cell Phones OFF!

Please keep your cell phones from ringing during the
lecture!

Course Objectives (1):
Course Description

The topic of programming languages is an important and rapidly
changing area of computer science. This course introduces
students to the basic concepts and terminology used to describe
programming languages. Instead of studying particular
programming languages, the course focuses on the "linguistics"
of programming languages, that is, on the common, unifying
themes that are relevant to programming languages in general.
The algorithmic, or procedural, programming languages are
particularly emphasized. Examples are drawn from early and
contemporary programming languages, including Fortran, Algol
60, PL/I, Algol 68, Pascal, C, C++, Eiffel, Ada and Java.

Course Objectives (2):
Topics May Include

Classification of programming languages: language levels, language
generations, language paradigms.
Programming language specification: lexical, syntactic, and semantic
levels of language definition.
Data, data types, and type systems; simple types, structured types,
type composition rules.
Control primitives, control structures, control composition rules.
Subprograms: functions and procedures; argument-parameter binding;
overloading.
Global program structure: modules, generic units, tasks, exceptions.
Object-oriented language features: classes, encapsulation, inheritance,
polymorphism.
Critical and comparative evaluation of programming languages.

Course Objectives (3):
Course Prerequisites

General prerequisites including CSE 2001 3.0
Not a bad idea to review some of the topics
related to DFAs and regular languages from CSE
2001
Relevant to scanning and parsing and initially, I was
planning to spend a considerable amount of time to
cover these topics but I decided not too!

Course Objectives (4):
Important Note (cont.)

Keep in mind that this course is a full-semester
course condensed into three weeks!

This means your schedule for the next three
weeks will be hectic!
You must ensure you study → read the book, read
my lecture notes etc. regularly as the tests and
assignment due dates are fast approaching!

Course Content (“Roadmap”) (1):
Material We Will Cover

Keep in mind that due to the nature of the course
(e.g., condensed), the topics may vary slightly

We may not cover all the material listed in the
following “roadmap” slides
We may cover material not listed altogether

Programming Language Fundaemntals

CSE 3301 Summer 2006

Bill Kapralos

Course Content (“Roadmap”) (2):
Chapter One:

Introduction
The art of language design
The programming language spectrum
Why study programming languages
Compilation and interpretation
Programming environments
Over of compilation

Course Content (“Roadmap”) (3):
Chapter Two:

Programming Language Syntax
Specifying syntax

Chapter Four:
Names, Scopes and Bindings

Object lifetime and storage management
Scope rules
Implementing scope
Binding of referencing environments
Binding within a scope
Separate compilation

Course Content (“Roadmap”) (4):
Chapter Five:

Target Machine Architecture
Memory hierarchy
Data representation
Instruction set architecture
Compiling for modern processors

Course Content (“Roadmap”) (5):
Chapter Six:

Control Flow
Expression evaluation
Structured and unstructured flow
Sequencing
Selection
Iteration
Recursion
Nondeterminacy

Course Content (“Roadmap”) (6):
Chapter Seven:

Data Types
Type systems
Type checking
Records (structures) and Variants (Unions)
Arrays, strings
Sets
Pointers and recursive types
Lists
File I/O
Equality testing and assignment

Course Content (“Roadmap”) (7):
Chapter Eight:

Subroutines and Control Abstraction
Review of stack layout
Calling sequences
Parameter passing
Generic subroutines and modules
Exception handling
Coroutines

Programming Language Fundaemntals

CSE 3301 Summer 2006

Bill Kapralos

Course Content (“Roadmap”) (8):
Chapter Nine:

Data Abstraction and Object Orientation
Object oriented programming
Encapsulation and inheritance
Initialization and finalization
Dynamic method binding
Multiple inheritance

Course Content (“Roadmap”) (9):
Chapter Twelve:

Concurrency
Background and Motivation
Concurrent programming fundamentals
Shared memory
Message passing

Course Content (“Roadmap”) (10):
Chapter Thirteen (time permitting):

Scripting Languages
What is a scripting language
Problem domains
Scripting the world wide web
Innovative features

Course Content (“Roadmap”) (11):
Chapter Fourteen (time permitting):

Building a Runnable Program
Back-end compiler structure
Intermediate forms
Code generation
Address space organization
Assembly
Linking
Dynamic linking

Course Content (“Roadmap”) (12):
Chapter Fifteen (time permitting):

Code Improvement
Phases of code improvement
Peephole optimization
Global redundancy and data flow analysis
Loop improvements I
Instruction scheduling
Loop improvements II
Register allocation

