
1

Copyright © 2005 Elsevier

Chapter 8 :: Subroutines and
Control Abstraction

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Administrative Notes

• Final Test
– Thursday, August 3 2006 at 11:30am
– No lecture before or after the mid-term test
– You are responsible for material presented in the

lectures not necessarily covered in the textbook
– Similar format (time) to the mid-term test

• Final Test Review Tomorrow
– We will go over the solutions of test 1
– I will let you know what sections you are

responsible for

Copyright © 2005 Elsevier

Administrative Notes

• Assignment Two
– Due date: Friday, August 4 2006 at 1:00pm
– Submit your assignment in the drop-box located

at the Computer Science and Engineering
undergraduate office

– Late assignments are subject to a penalty of 10%
each day

– I may choose to mark only a subset of the
assigned questions

– You must "show your work" where appropriate
to obtain full marks

Copyright © 2005 Elsevier

Administrative Details

• Test 1
– Will be returned to you tomorrow (Wednesday)

• Assignment Three
– Will be placed online one Wednesday

Copyright © 2005 Elsevier

Review

• What is type compatibility ?
• What is type equivalence ?
• What are the two major approaches for type

checking ?
• What is coercion ?
• Name two languages where coercion is

highly used
• How are records arranged in memory ?
• Describe the issues with records/memory

allocation
Copyright © 2005 Elsevier

Review

• What is an array and what is the relationship
between arrays/pointers in C ?

• What is an array slice ?
• Does C support array slices ?
• How can the elements of the array be

accessed (two methods)
• What are the two layout strategies for array
• What is a String ?
• What are pointers ?
• What is garbage collection ?

2

Copyright © 2005 Elsevier

Review Of Stack Layout

• Allocation strategies
– Static
• Code
• Globals
• Own variables
• Explicit constants (including strings, sets, other

aggregates)
• Small scalars may be stored in the instructions

themselves

Copyright © 2005 Elsevier

Review Of Stack Layout

Copyright © 2005 Elsevier

Review Of Stack Layout

• Allocation strategies (2)
– Stack
• parameters
• local variables
• temporaries
• bookkeeping information

– Heap
• dynamic allocation

Copyright © 2005 Elsevier

Review Of Stack Layout

• Contents of a stack frame
– bookkeeping
• return PC (dynamic link)
• saved registers
• line number
• saved display entries
• static link

– arguments and returns
– local variables
– temporaries

Copyright © 2005 Elsevier

Calling Sequences

• Maintenance of stack is responsibility of
calling sequence and subroutine prolog and
epilog – discussed in Chapter 3
– space is saved by putting as much in the prolog

and epilog as possible
– time may be saved by putting stuff in the caller

instead, where more information may be known
• e.g., there may be fewer registers IN USE at the

point of call than are used SOMEWHERE in the
callee

Copyright © 2005 Elsevier

Calling Sequences

• Common strategy is to divide registers into
caller-saves and callee-saves sets
– caller uses the "callee-saves" registers first
– "caller-saves" registers if necessary

• Local variables and arguments are assigned
fixed OFFSETS from the stack pointer or
frame pointer at compile time
– some storage layouts use a separate arguments

pointer
– the VAX architecture encouraged this

3

Copyright © 2005 Elsevier

Calling Sequences

Copyright © 2005 Elsevier

Calling Sequences (C on MIPS)

• Caller
– saves into the temporaries and locals area any

caller-saves registers whose values will be needed
after the call
– puts up to 4 small arguments into registers $4-$7

(a0-a3)
• it depends on the types of the parameters and the order

in which they appear in the argument list
– puts the rest of the arguments into the arg build

area at the top of the stack frame
– does jal, which puts return address into register ra

and branches
• note that jal, like all branches, has a delay slot

Copyright © 2005 Elsevier

Calling Sequences (C on MIPS)

• In prolog, Callee
– subtracts framesize from sp
– saves callee-saves registers used anywhere inside

callee
– copies sp to fp

• In epilog, Callee
– puts return value into registers (mem if large)
– copies fp into sp (see below for rationale)
– restores saved registers using sp as base
– adds to sp to deallocate frame
– does jra Copyright © 2005 Elsevier

Calling Sequences (C on MIPS)

• After call, Caller
– moves return value from register to wherever

it's needed (if appropriate)
– restores caller-saves registers lazily over time,

as their values are needed
• All arguments have space in the stack,

whether passed in registers or not
• The subroutine just begins with some of the

arguments already cached in registers, and
'stale' values in memory

Copyright © 2005 Elsevier

Calling Sequences (C on MIPS)

• This is a normal state of affairs; optimizing
compilers keep things in registers whenever
possible, flushing to memory only when
they run out of registers, or when code may
attempt to access the data through a pointer
or from an inner scope

Copyright © 2005 Elsevier

Calling Sequences (C on MIPS)

• Many parts of the calling sequence,
prologue, and/or epilogue can be omitted in
common cases
– particularly LEAF routines (those that don't call

other routines)
• leaving things out saves time
• simple leaf routines don't use the stack - don't even

use memory – and are exceptionally fast

4

Copyright © 2005 Elsevier

Parameter Passing

• Parameter passing mechanisms have three
basic implementations
– value
– value/result (copying)
– reference (aliasing)
– closure/name

• Many languages (e.g., Pascal) provide value
and reference directly

Copyright © 2005 Elsevier

Parameter Passing

• C/C++: functions
– parameters passed by value (C)
– parameters passed by reference can be

simulated with pointers (C)
void proc(int* x,int y){*x = *x+y }
…

proc(&a,b);
– or directly passed by reference (C++)

void proc(int& x, int y) {x = x + y
}

proc(a,b);

Copyright © 2005 Elsevier

Parameter Passing

• Ada goes for semantics: who can do what
– In: callee reads only
– Out: callee writes and can then read (formal not

initialized); actual modified
– In out: callee reads and writes; actual modified

• Ada in/out is always implemented as
– value/result for scalars, and either
– value/result or reference for structured objects

Copyright © 2005 Elsevier

Parameter Passing

• In a language with a reference model of
variables (Lisp, Clu), pass by reference
(sharing) is the obvious approach
• It's also the only option in Fortran
• If you pass a constant, the compiler creates a

temporary location to hold it
• If you modify the temporary, who cares?

• Call-by name is an old Algol technique
• Think of it as call by textual substitution

(procedure with all name parameters works like
macro) - what you pass are hidden procedures
called THUNKS

Copyright © 2005 Elsevier

Parameter Passing

Copyright © 2005 Elsevier

Generic Subroutines and Modules

• Generic modules or classes are particularly
valuable for creating containers: data
abstractions that hold a collection of objects

• Generic subroutines (methods) are needed
in generic modules (classes), and may also
be useful in their own right

5

Copyright © 2005 Elsevier

Exception Handling

• What is an exception?
– a hardware-detected run-time error or

unusual condition detected by software
• Examples
– arithmetic overflow
– end-of-file on input
–wrong type for input data
– user-defined conditions, not necessarily

errors
Copyright © 2005 Elsevier

Exception Handling

• What is an exception handler?
– code executed when exception occurs
– may need a different handler for each type of

exception
• Why design in exception handling facilities?
– allow user to explicitly handle errors in a uniform

manner
– allow user to handle errors without having to

check these conditions
– explicitly in the program everywhere they might

occur

Copyright © 2005 Elsevier

Coroutines

• Coroutines are execution contexts that exist
concurrently, but that execute one at a time,
and that transfer control to each other
explicitly, by name
• Coroutines can be used to implement

– iterators (Section 6.5.3)
– threads (to be discussed in Chapter 12)

• Because they are concurrent (i.e.,
simultaneously started but not completed),
coroutines cannot share a single stack

Copyright © 2005 Elsevier

Coroutines

