
1

Copyright © 2005 Elsevier

Chapter 1 :: Introduction

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Introduction

• Why are there so many programming 
languages?
– evolution -- we've learned better ways of doing 

things over time
– socio-economic factors: proprietary interests, 

commercial advantage
– orientation toward special purposes
– orientation toward special hardware
– diverse ideas about what is pleasant to use

Copyright © 2005 Elsevier

Introduction

• What makes a language successful?
– easy to learn (BASIC, Pascal, LOGO, Scheme)
– easy to express things, easy use once fluent, "powerful”

(C, Common Lisp, APL, Algol-68, Perl)
– easy to implement (BASIC, Forth)
– possible to compile to very good (fast/small) code 

(Fortran)
– backing of a powerful sponsor (COBOL, PL/1, Ada, 

Visual Basic)
– wide dissemination at minimal cost (Pascal, Turing, Java)

Copyright © 2005 Elsevier

Introduction

• Why do we have programming languages?  
What is a language for?
– way of thinking -- way of expressing algorithms
– languages from the user's point of view
– abstraction of virtual machine -- way of 

specifying what you want
– the hardware to do without getting down into the 

bits
– languages from the implementor's point of view

Copyright © 2005 Elsevier

Why study programming languages?

• Help you choose a language.
– C vs. Modula-3 vs. C++ for systems programming
– Fortran vs. APL vs. Ada for numerical 

computations
– Ada vs. Modula-2 for embedded systems
– Common Lisp vs. Scheme vs. ML for symbolic 

data manipulation
– Java vs. C/CORBA for networked PC programs

Copyright © 2005 Elsevier

Why study programming languages?

• Make it easier to learn new languages some 
languages are similar; easy to walk down 
family tree
– concepts have even more similarity; if you think in 

terms of iteration, recursion, abstraction (for 
example), you will find it easier to assimilate the 
syntax and semantic details of a new language than 
if you try to pick it up in a vacuum.  Think of an 
analogy to human languages: good grasp of 
grammar makes it easier to pick up new languages 
(at least Indo-European).



2

Copyright © 2005 Elsevier

Why study programming languages?

• Help you make better use of whatever 
language you use
– understand obscure features:

• In C, help you understand unions, arrays & pointers, 
separate compilation, varargs, catch and throw

• In Common Lisp, help you understand first-class 
functions/closures, streams, catch and throw, symbol 
internals

Copyright © 2005 Elsevier

Why study programming languages?

• Help you make better use of whatever 
language you use (2)
– understand implementation costs: choose between 

alternative ways of doing things, based on 
knowledge of what will be done underneath:

– use simple arithmetic equal (use x*x instead of x**2)
– use C pointers or Pascal "with" statement to factor address 

calculations
– avoid call by value with large data items in Pascal
– avoid the use of call by name in Algol 60
– choose between computation and table lookup (e.g. for 

cardinality operator in C or C++)

Copyright © 2005 Elsevier

Why study programming languages?

• Help you make better use of whatever 
language you use (3)
– figure out how to do things in languages that 

don't support them explicitly:
• lack of suitable control structures in Fortran
• use comments and programmer discipline for 

control structures
• lack of recursion in Fortran, CSP, etc
• write a recursive algorithm then use mechanical 

recursion elimination (even for things that aren't 
quite tail recursive)

Copyright © 2005 Elsevier

Why study programming languages?

• Help you make better use of whatever 
language you use (4)
– figure out how to do things in languages that 

don't support them explicitly:
– lack of named constants and enumerations in Fortran
– use variables that are initialized once, then never changed
– lack of modules in C and Pascal use comments and 

programmer discipline
– lack of iterators in just about everything fake them with 

(member?) functions

Copyright © 2005 Elsevier

Imperative languages

• Group languages as
– imperative

• von Neumann (Fortran, Pascal, Basic, C)

• object-oriented (Smalltalk, Eiffel, C++?)

• scripting languages (Perl, Python, JavaScript, PHP)

– declarative
• functional (Scheme, ML, pure Lisp, FP)

• logic, constraint-based (Prolog, VisiCalc, RPG)

Copyright © 2005 Elsevier

Imperative languages

• Imperative languages, particularly the von 
Neumann languages, predominate
– They will occupy the bulk of our attention

• We also plan to spend a lot of time on 
functional, logic languages



3

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Compilation vs. interpretation
– not opposites
– not a clear-cut distinction

• Pure Compilation
– The compiler translates the high-level source 

program into an equivalent target program 
(typically in machine language), and then goes 
away:

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Pure Interpretation
– Interpreter stays around for the execution of the 

program
– Interpreter is the locus of control during 

execution

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Interpretation:
– Greater flexibility
– Better diagnostics (error messages)

• Compilation
– Better performance

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Common case is compilation or simple pre-
processing, followed by interpretation

• Most language implementations include a 
mixture of both compilation and 
interpretation

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Note that compilation does NOT have to produce 
machine language for some sort of hardware 

• Compilation is translation from one language into 
another, with full analysis of the meaning of the input

• Compilation entails semantic understanding of what is 
being processed; pre-processing does not

• A pre-processor will often let errors through.  A 
compiler hides further steps; a pre-processor does not

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Many compiled languages have interpreted 
pieces, e.g., formats in Fortran or C

• Most use “virtual instructions”
– set operations in Pascal
– string manipulation in Basic

• Some compilers produce nothing but virtual 
instructions, e.g., Pascal P-code, Java byte 
code, Microsoft COM+



4

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Preprocessor

• Removes comments and white space
• Groups characters into tokens (keywords, identifiers, 

numbers, symbols)
• Expands abbreviations in the style of a macro 

assembler
• Identifies higher-level syntactic structures (loops, 

subroutines)

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Library of Routines and Linking

• Compiler uses a linker program to merge the appropriate 
library of subroutines (e.g., math functions such as sin, 
cos, log, etc.) into the final program:

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Post-compilation Assembly

• Facilitates debugging (assembly language easier for 
people to read)

• Isolates the compiler from changes in the format of 
machine language files (only assembler must be 
changed, is shared by many compilers)

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– The C Preprocessor (conditional compilation)

• Preprocessor deletes portions of code, which allows 
several versions of a program to be built from the 
same source

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Source-to-Source Translation (C++)

• C++ implementations based on the early AT&T 
compiler generated an intermediate program in C, 
instead of an assembly language:

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Source-to-Source Translation (C++)

• C++ implementations based on the early AT&T 
compiler generated an intermediate program in C, 
instead of an assembly language:



5

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Bootstrapping

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Compilation of Interpreted Languages

• The compiler generates code that makes 
assumptions about decisions that won’t be finalized 
until runtime. If these assumptions are valid, the 
code runs very fast. If not, a dynamic check will 
revert to the interpreter.

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Dynamic and Just-in-Time Compilation

• In some cases a programming system may deliberately 
delay compilation until the last possible moment.

– Lisp or Prolog invoke the compiler on the fly, to translate 
newly created source into machine language, or to optimize 
the code for a particular input set.

– The Java language definition defines a machine-independent 
intermediate form known as byte code. Byte code is the 
standard format for distribution of Java programs.

– The main C# compiler produces .NET Common Intermediate 
Language (CIL), which is then translated into machine code 
immediately prior to execution.

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Implementation strategies:
– Microcode

• Assembly-level instruction set is not implemented in 
hardware; it runs on an interpreter.

• Interpreter is written in low-level instructions 
(microcode or firmware), which are stored in read-
only memory and executed by the hardware.

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• Compilers exist for some interpreted languages, but 
they aren't pure:
– selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.  
– Interpretation of parts of code, at least, is still necessary for 

reasons above.
• Unconventional compilers

– text formatters
– silicon compilers
– query language processors

Copyright © 2005 Elsevier

Programming Environment Tools

• Tools



6

Copyright © 2005 Elsevier

An Overview of Compilation

• Phases of Compilation

Copyright © 2005 Elsevier

An Overview of Compilation

• Scanning:
– divides the program into "tokens", which are the 

smallest meaningful units; this saves time, since 
character-by-character processing is slow

– we can tune the scanner better if its job is simple; 
it also saves complexity (lots of it) for later stages 

– you can design a parser to take characters instead 
of tokens as input, but it isn't pretty

– scanning is recognition of a regular language, e.g., 
via DFA

Copyright © 2005 Elsevier

An Overview of Compilation

• Parsing is recognition of a context-free 
language, e.g., via PDA
– Parsing discovers the "context free" structure of 

the program 
– Informally, it finds the structure you can 

describe with syntax diagrams (the "circles and 
arrows" in a Pascal manual)

Copyright © 2005 Elsevier

An Overview of Compilation

• Semantic analysis is the discovery of meaning
in the program
– The compiler actually does what is called STATIC 

semantic analysis. That's the meaning that can be 
figured out at compile time

– Some things (e.g., array subscript out of bounds) 
can't be figured out until run time.  Things like 
that are part of the program's DYNAMIC 
semantics

Copyright © 2005 Elsevier

An Overview of Compilation

• Intermediate form (IF) done after semantic 
analysis (if the program passes all checks)
– IFs are often chosen for machine independence, 

ease of optimization, or compactness (these are 
somewhat contradictory)

– They often resemble machine code for some 
imaginary idealized machine; e.g. a stack machine, 
or a machine with arbitrarily many registers  

– Many compilers actually move the code through 
more than one IF

Copyright © 2005 Elsevier

An Overview of Compilation

• Optimization takes an intermediate-code 
program and produces another one that does 
the same thing faster, or in less space 
– The term is a misnomer; we just improve code  
– The optimization phase is optional

• Code generation phase produces assembly 
language or (sometime) relocatable machine 
language



7

Copyright © 2005 Elsevier

An Overview of Compilation

• Certain machine-specific optimizations (use of 
special instructions or addressing modes, etc.) 
may be performed during or after target code 
generation

• Symbol table: all phases rely on a symbol table 
that keeps track of all the identifiers in the 
program and what the compiler knows about them
– This symbol table may be retained (in some form) for 

use by a debugger, even after compilation has 
completed

Copyright © 2005 Elsevier

An Overview of Compilation

• Lexical and Syntax Analysis
– GCD Program (Pascal)

Copyright © 2005 Elsevier

An Overview of Compilation

• Lexical and Syntax Analysis
– GCD Program Tokens

• Scanning (lexical analysis) and parsing recognize the 
structure of the program, groups characters into 
tokens, the smallest meaningful units of the program

Copyright © 2005 Elsevier

An Overview of Compilation

• Lexical and Syntax Analysis
– Context-Free Grammar and Parsing

• Parsing organizes tokens into a parse tree that 
represents higher-level constructs in terms of their 
constituents

• Potentially recursive rules known as context-free 
grammar define the ways in which these 
constituents combine

Copyright © 2005 Elsevier

An Overview of Compilation

• Context-Free Grammar and Parsing
– Example (Pascal program)

Copyright © 2005 Elsevier

An Overview of Compilation

• Context-Free Grammar and Parsing
– GCD Program Parse Tree

Next slide



8

Copyright © 2005 Elsevier

An Overview of Compilation

• Context-Free Grammar and Parsing
– GCD Program Parse Tree (continued)

Copyright © 2005 Elsevier

An Overview of Compilation

• Syntax Tree
– GCD Program Parse Tree


