
1

Copyright © 2005 Elsevier

Chapter 2 ::
Programming Language Syntax

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Review

• What is a programming language ?
• Why are there so many programming

languages ?
• List several of the factors that make

programming languages successful
• List several of the reasons that programming

languages are studied
• What are the tw broad groups of

programming languages ?

Copyright © 2005 Elsevier

Review

• What are declarative languages ?
• What are imperative languages ?
• List some languages in each group
• Describe pure compilation/interpretation
• Describe some compilation strategies
• Provide a brief overview of the compilation

process

2

Copyright © 2005 Elsevier

Regular Expressions

• A regular expression is one of the following:
– A character
– The empty string, denoted by ε
– Two regular expressions concatenated
– Two regular expressions separated by | (i.e., or)
– A regular expression followed by the Kleene star

(concatenation of zero or more strings)

Copyright © 2005 Elsevier

Regular Expressions

• Numerical literals in Pascal may be generated
by the following:

Copyright © 2005 Elsevier

Context-Free Grammars

• The notation for context-free grammars (CFG)
is sometimes called Backus-Naur Form (BNF)

• A CFG consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions

3

Copyright © 2005 Elsevier

Context-Free Grammars

• Expression grammar with precedence and
associativity

Copyright © 2005 Elsevier

Context-Free Grammars

• Parse tree for expression grammar (with
precedence) for 3 + 4 * 5

Copyright © 2005 Elsevier

Context-Free Grammars

• Parse tree for expression grammar (with left
associativity) for 10 - 4 - 3

4

Copyright © 2005 Elsevier

Chapter 3::
Names, Scopes, and Bindings

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Name, Scope, and Binding

• A name is exactly what you think it is
– Most names are identifiers
– symbols (like '+') can also be names

• A binding is an association between two
things, such as a name and the thing it
names

• The scope of a binding is the part of the
program (textually)in which the binding is
active

Copyright © 2005 Elsevier

Binding

• Binding Time is the point at which a binding
is created or, more generally, the point at
which any implementation decision is made
– language design time

• program structure, possible type

– language implementation time
• I/O, arithmetic overflow, type equality (if unspecified

in manual)

5

Copyright © 2005 Elsevier

Binding

• Implementation decisions (continued):
– program writing time

• algorithms, names

– compile time
• plan for data layout

– link time
• layout of whole program in memory

– load time
• choice of physical addresses

Copyright © 2005 Elsevier

Binding

• Implementation decisions (continued):
– run time

• value/variable bindings, sizes of strings
• subsumes

– program start-up time
– module entry time
– elaboration time (point a which a declaration is first

"seen")
– procedure entry time
– block entry time
– statement execution time

Copyright © 2005 Elsevier

Binding

• The terms STATIC and DYNAMIC are
generally used to refer to things bound
before run time and at run time, respectively
– “static” is a coarse term; so is "dynamic"

• IT IS DIFFICULT TO OVERSTATE THE
IMPORTANCE OF BINDING TIMES IN
PROGRAMMING LANGUAGES

6

Copyright © 2005 Elsevier

Binding
• In general, early binding times are associated

with greater efficiency
• Later binding times are associated with greater

flexibility
• Compiled languages tend to have early

binding times
• Interpreted languages tend to have later

binding times
• Today we talk about the binding of identifiers

to the variables they name

Copyright © 2005 Elsevier

Binding

• Scope Rules - control bindings
– Fundamental to all programming languages is the

ability to name data, i.e., to refer to data using
symbolic identifiers rather than addresses

– Not all data is named! For example, dynamic
storage in C or Pascal is referenced by pointers,
not names

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Key events
– creation of objects
– creation of bindings
– references to variables (which use bindings)
– (temporary) deactivation of bindings
– reactivation of bindings
– destruction of bindings
– destruction of objects

7

Copyright © 2005 Elsevier

Lifetime and Storage Management

• The period of time from creation to destruction is
called the LIFETIME of a binding
– If object outlives binding it's garbage
– If binding outlives object it's a dangling

reference
• The textual region of the program in which the

binding is active is its scope
• In addition to talking about the scope of a binding,

we sometimes use the word scope as a noun all by
itself, without an indirect object

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Storage Allocation mechanisms
– Static
– Stack
– Heap

• Static allocation for
– code
– globals
– static or own variables
– explicit constants (including strings, sets, etc)
– scalars may be stored in the instructions

Copyright © 2005 Elsevier

Lifetime and Storage Management

8

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Central stack for
– parameters
– local variables
– temporaries

• Why a stack?
– allocate space for recursive routines

(not necessary in FORTRAN – no recursion)
– reuse space

(in all programming languages)

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Contents of a stack frame (cf., Figure 3.2)
– arguments and returns
– local variables
– temporaries
– bookkeeping (saved registers, line number static

link, etc.)
• Local variables and arguments are assigned

fixed OFFSETS from the stack pointer or
frame pointer at compile time

Copyright © 2005 Elsevier

Lifetime and Storage Management

