
1

Copyright © 2005 Elsevier

Chapter 3::
Names, Scopes, and Bindings (cont.)

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Review

• What is a regular expression ?
• What is a context-free grammar ?
• What is BNF ?
• What is a derivation ?
• What is a parse ?
• What are terminals/non-terminals/start

symbol ?
• What is Kleene star and how is it denoted ?
• What is binding ?

Copyright © 2005 Elsevier

Review

• What is early/late binding with respect to
OOP and Java in particular ?

• What is scope ?
• What is lifetime?
• What is the “general” basic relationship

between compile time/run time and
efficiency/flexibility ?

• What is the purpose of scope rules ?
• What is central to recursion ?

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Maintenance of stack is responsibility of
calling sequence and subroutine prolog and
epilog
– space is saved by putting as much in the prolog

and epilog as possible
– time may be saved by

• putting stuff in the caller instead
or

• combining what's known in both places
(interprocedural optimization)

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Heap for dynamic allocation

Copyright © 2005 Elsevier

Scope Rules

• A scope is a program section of maximal size in
which no bindings change, or at least in which
no re-declarations are permitted (see below)

• In most languages with subroutines, we OPEN a
new scope on subroutine entry:
– create bindings for new local variables,
– deactivate bindings for global variables that are re-

declared (these variable are said to have a "hole" in
their scope)

– make references to variables

2

Copyright © 2005 Elsevier

Scope Rules
• On subroutine exit:

– destroy bindings for local variables
– reactivate bindings for global variables that were

deactivated
• Algol 68:

– ELABORATION = process of creating bindings
when entering a scope

• Ada (re-popularized the term elaboration):
– storage may be allocated, tasks started, even

exceptions propagated as a result of the
elaboration of declarations

Copyright © 2005 Elsevier

Scope Rules

• With STATIC (LEXICAL) SCOPE RULES, a
scope is defined in terms of the physical
(lexical) structure of the program
– The determination of scopes can be made by the

compiler
– All bindings for identifiers can be resolved by

examining the program
– Typically, we choose the most recent, active

binding made at compile time
– Most compiled languages, C and Pascal included,

employ static scope rules

Copyright © 2005 Elsevier

Scope Rules

• The classical example of static scope rules is
the most closely nested rule used in block
structured languages such as Algol 60 and
Pascal
– An identifier is known in the scope in which it is

declared and in each enclosed scope, unless it is
re-declared in an enclosed scope

– To resolve a reference to an identifier, we examine
the local scope and statically enclosing scopes
until a binding is found

Copyright © 2005 Elsevier

Scope Rules

• We will see classes - a relative of modules - later
on, when discussing abstraction and object-
oriented languages
– These have even more sophisticated (static) scope

rules
• Euclid is an example of a language with

lexically-nested scopes in which all scopes are
closed
– rules were designed to avoid ALIASES, which

complicate optimization and correctness arguments

Copyright © 2005 Elsevier

Scope Rules

• Note that the bindings created in a
subroutine are destroyed at subroutine exit
– The modules of Modula, Ada, etc., give you

closed scopes without the limited lifetime
– Bindings to variables declared in a module are

inactive outside the module, not destroyed
– The same sort of effect can be achieved in

many languages with own (Algol term) or static
(C term) variables (see Figure 3.5)

Copyright © 2005 Elsevier

Scope Rules

• Access to non-local variables STATIC LINKS
– Each frame points to the frame of the (correct

instance of) the routine inside which it was
declared

– In the absence of formal subroutines, correct means
closest to the top of the stack

– You access a variable in a scope k levels out by
following k static links and then using the known
offset within the frame thus found

• More details in Chapter 8

3

Copyright © 2005 Elsevier

Scope Rules

Copyright © 2005 Elsevier

Scope Rules

• The key idea in static scope rules is that
bindings are defined by the physical (lexical)
structure of the program.

• With dynamic scope rules, bindings depend
on the current state of program execution
– They cannot always be resolved by examining the

program because they are dependent on calling
sequences

– To resolve a reference, we use the most recent,
active binding made at run time

Copyright © 2005 Elsevier

Scope Rules

• Dynamic scope rules are usually
encountered in interpreted languages
– early LISP dialects assumed dynamic scope

rules.
• Such languages do not normally have

type checking at compile time because
type determination isn't always possible
when dynamic scope rules are in effect

Copyright © 2005 Elsevier

program scopes (input, output);
var a : integer;
procedure first;

begin a := 1; end;
procedure second;

var a : integer;
begin first; end;

begin
a := 2; second; write(a);

end.

Scope Rules
Example: Static vs. Dynamic

Copyright © 2005 Elsevier

• If static scope rules are in effect (as would be
the case in Pascal), the program prints a 1

• If dynamic scope rules are in effect, the
program prints a 2

• Why the difference? At issue is whether the
assignment to the variable a in procedure first
changes the variable a declared in the main
program or the variable a declared in
procedure second

Scope Rules
Example: Static vs. Dynamic

Copyright © 2005 Elsevier

• Static scope rules require that the reference
resolve to the most recent, compile-time binding,
namely the global variable a

• Dynamic scope rules, on the other hand, require
that we choose the most recent, active binding at
run time
– Perhaps the most common use of dynamic scope rules

is to provide implicit parameters to subroutines
– This is generally considered bad programming

practice nowadays
• Alternative mechanisms exist

– static variables that can be modified by auxiliary routines
– default and optional parameters

Scope Rules
Example: Static vs. Dynamic

4

Copyright © 2005 Elsevier

• At run time we create a binding for a when we
enter the main program.

• Then we create another binding for a when we
enter procedure second
– This is the most recent, active binding when

procedure first is executed
– Thus, we modify the variable local to procedure

second, not the global variable
– However, we write the global variable because the

variable a local to procedure second is no longer
active

Scope Rules
Example: Static vs. Dynamic

Copyright © 2005 Elsevier

Binding of Referencing Environments

• Accessing variables with dynamic scope:
– (1) keep a stack (association list) of all active

variables
• When you need to find a variable, hunt down from

top of stack
• This is equivalent to searching the activation records

on the dynamic chain

Copyright © 2005 Elsevier

Binding of Referencing Environments

• Accessing variables with dynamic scope:
– (2) keep a central table with one slot for every

variable name
• If names cannot be created at run time, the table

layout (and the location of every slot) can be fixed at
compile time

• Otherwise, you'll need a hash function or something
to do lookup

• Every subroutine changes the table entries for its
locals at entry and exit.

Copyright © 2005 Elsevier

Binding of Referencing Environments

• (1) gives you slow access but fast calls
• (2) gives you slow calls but fast access
• In effect, variable lookup in a dynamically-

scoped language corresponds to symbol
table lookup in a statically-scoped language

• Because static scope rules tend to be more
complicated, however, the data structure
and lookup algorithm also have to be more
complicated

Copyright © 2005 Elsevier

Binding of Referencing Environments

• REFERENCING ENVIRONMENT of a
statement at run time is the set of active
bindings

• A referencing environment corresponds to a
collection of scopes that are examined (in
order) to find a binding

Copyright © 2005 Elsevier

Binding of Referencing Environments

• SCOPE RULES determine that collection
and its order

• BINDING RULES determine which
instance of a scope should be used to
resolve references when calling a procedure
that was passed as a parameter
– they govern the binding of referencing

environments to formal procedures

5

Copyright © 2005 Elsevier

Binding within a Scope

• Aliasing
– What are aliases good for? (consider uses of

FORTRAN equivalence)
• space saving - modern data allocation methods are

better
• multiple representations - unions are better
• linked data structures - legit

– Also, aliases arise in parameter passing as an
unfortunate side effect

• Euclid scope rules are designed to prevent this

Copyright © 2005 Elsevier

Binding within a Scope

• Overloading
– some overloading happens in almost all

languages
• integer + v. real +
• read and write in Pascal
• function return in Pascal

– some languages get into overloading in a big
way
• Ada (see Figure 3.18 for examples)
• C++ (see Figure 3.19 for examples)

Copyright © 2005 Elsevier

• It's worth distinguishing between some closely
related concepts
– overloaded functions - two different things with

the same name; in C++
• overload norm
int norm (int a){return a>0 ? a : -a;)
complex norm (complex c) { // ...

– polymorphic functions -- one thing that works in
more then one way
• in Modula-2: function min (A : array of integer); …
• in Smalltalk

Binding within a Scope

Copyright © 2005 Elsevier

• It's worth distinguishing between some
closely related concepts (2)
– generic functions (modules, etc.) - a syntactic

template that can be instantiated in more than
one way at compile time
• via macro processors in C++
• built-in in C++
• in Clu
• in Ada

Binding within a Scope

Copyright © 2005 Elsevier

Separate Compilation

• Separately-compiled files in C provide a
sort of poor person's modules:
– Rules for how variables work with separate

compilation are messy
– Language has been jerry-rigged to match the

behavior of the linker
– Static on a function or variable outside a

function means it is usable only in the current
source file
• This static is a different notion from the static

variables inside a function
Copyright © 2005 Elsevier

Separate Compilation

• Separately-compiled files in C (continued)
– Extern on a variable or function means that it is

declared in another source file
– Functions headers without bodies are extern by

default
– Extern declarations are interpreted as forward

declarations if a later declaration overrides
them

6

Copyright © 2005 Elsevier

Separate Compilation

• Separately-compiled files in C (continued)
– Variables or functions (with bodies) that don't say

static or extern are either global or common (a
Fortran term)
• Functions and variables that are given initial values are

global
• Variables that are not given initial values are common

–Matching common declarations in different files
refer to the same variable
• They also refer to the same variable as a matching

global declaration
Copyright © 2005 Elsevier

Conclusions

• The morals of the story:
– language features can be surprisingly subtle
– designing languages to make life easier for the

compiler writer can be a GOOD THING
– most of the languages that are easy to

understand are easy to compile, and vice versa

Copyright © 2005 Elsevier

Conclusions

• A language that is easy to compile often
leads to
– a language that is easy to understand
– more good compilers on more machines

(compare Pascal and Ada!)
– better (faster) code
– fewer compiler bugs
– smaller, cheaper, faster compilers
– better diagnostics

Copyright © 2005 Elsevier

Chapter 5::
Target Machine Architecture

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Assembly-Level View

• As mentioned early in this course, a compiler is
simply a translator
– It translates programs written in one language into

programs written in
another language
• This other language can be almost anything
• Most of the time, however, it's the machine language for

some available computer

Copyright © 2005 Elsevier

Assembly-Level View

• As a review, we will go over some of the
material most relevant to language
implementation, so that we can better
understand
– what the compiler has to do to your program
– why certain things are fast and others slow
– why certain things are easy to compile and

others aren't

7

Copyright © 2005 Elsevier

Assembly-Level View

• There are many different programming
languages and there are many different
machine languages
–Machine languages show considerably less

diversity than programming languages
– Traditionally, each machine language corresponds

to a different computer ARCHITECTURE
– The IMPLEMENTATION is how the architecture

is realized in hardware
Copyright © 2005 Elsevier

Assembly-Level View

• Formally, an architecture is the interface to
the hardware
– what it looks like to a user writing programs on

the bare machine.

• In the last 20 years, the line between these
has blurred to the point of disappearing
– compilers have to know a LOT about the

implementation to do a decent job

Copyright © 2005 Elsevier

Assembly-Level View

• Changes in hardware technology (e.g., how
many transistors can you fit on one chip?) have
made new implementation techniques possible
– the architecture was also modified
– Example: RISC (reduced instruction set computer)

revolution ~20 years ago
• In the discussion below, we will focus on

modern RISC architectures, with a limited
amount of coverage of their predecessors, the
CISC architectures

Copyright © 2005 Elsevier

Workstation Macro-Architecture

• Most modern computers consist of a collection
of DEVICES that talk to each other over a BUS
• From the point of view of language

implementation:
– the most important device is the PROCESSOR(S)
– the second most important is main memory
– other devices include: disks, keyboards, screens,

networks, general-purpose serial/parallel ports, etc.

Copyright © 2005 Elsevier

Workstation Macro-Architecture
• Almost all modern computers use the (von

Neumann) stored program concept:
– a program is simply a collection of bits in memory that the

computer interprets as instructions, rather than as integers,
floating point numbers, or some other sort of data

• What a processor does is repeatedly
– fetch an instruction from memory
– decode it - figure out what it says to do
– fetch any needed operands from registers or memory
– execute the operation, and
– store any result(s) back into registers or memory

Copyright © 2005 Elsevier

Workstation Macro-Architecture

• This set of operations is referred to as the fetch-
execute cycle
– The computer runs this cycle at a furious pace, never

stopping, regardless of the meaning of the instructions
• You can point a processor's instruction fetch logic at a long string of

floating point numbers and it will blithely begin to execute them; it will
do something, though that something probably won't make much sense
• Operating systems are designed so that when the computer has nothing

useful to do it is pointed at an infinite loop that it can execute furiously,
but harmlessly

8

Copyright © 2005 Elsevier

Workstation Macro-Architecture
• The crucial components of a typical processor

include a collection of FUNCTIONAL UNITS:
– hardware to decode instructions and drive the other

functional units
– hardware to fetch instructions and data from memory and

to store them back again if they are modified
– one or more arithmetic/logic units (ALUs) to do actual

computations
– registers to hold the most heavily-used parts of the state of

the computation
– hardware to move data among the various functional units

and registers
Copyright © 2005 Elsevier

• Memory is too big to fit on one chip with a
processor
– Because memory is off-chip (in fact, on the

other side of the bus), getting at it is much
slower than getting at things on-chip
–Most computers therefore employ a MEMORY

HIERARCHY, in which things that are used
more often are kept close at hand

Memory Hierarchy

Copyright © 2005 Elsevier

Memory Hierarchy

