Chapter 3::
Names, Scopes, and Bindings (cont.)

Programming Language Pragmatics

Michael L. Scott

Copyright © 2005 Elsevier

Review

* What is a regular expression ?

* What is a context-free grammar ?

e What is BNF ?

* What is a derivation ?

* What is a parse ?

* What are terminals/non-terminals/start
symbol ?

* What is Kleene star and how is it denoted ?

* What is binding ?

Copyright © 2005 Elsevier

Review

* What is early/late binding with respect to
OOP and Java in particular ?

* What is scope ?
e What is lifetime?

* What is the “general” basic relationship
between compile time/run time and
efficiency/flexibility ?

* What is the purpose of scope rules ?
« What is central to recursion ?

Copyright © 2005 Elsevier

Lifetime and Storage Management

 Heap for dynamic allocation

"I W W 0
o i ’4

Figure 3.3: External fre
free, W Is

atation. The shaded hio

Copyright © 2005 Elsevier

Lifetime and Storage Management

* Maintenance of stack is responsibility of
calling sequence and subroutine prolog and
epilog
— space is saved by putting as much in the prolog

and epilog as possible
— time may be saved by
* putting stuff in the caller instead
or
« combining what's known in both places
(interprocedural optimization)

Copyright © 2005 Elsevier

Scope Rules

* A scope is a program section of maximal size in
which no bindings change, or at least in which
no re-declarations are permitted (see below)

* In most languages with subroutines, we OPEN a
new scope on subroutine entry:

— create bindings for new local variables,

— deactivate bindings for global variables that are re-
declared (these variable are said to have a "hole" in
their scope)

— make references to variables

Copyright © 2005 Elsevier




Scope Rules
 On subroutine exit:
— destroy bindings for local variables
— reactivate bindings for global variables that were
deactivated
+ Algol 68:

— ELABORATION = process of creating bindings
when entering a scope

 Ada (re-popularized the term elaboration):

— storage may be allocated, tasks started, even
exceptions propagated as a result of the
elaboration of declarations

Copyright © 2005 Elsevier

Scope Rules

* With STATIC (LEXICAL) SCOPE RULES, a
scope is defined in terms of the physical
(lexical) structure of the program
— The determination of scopes can be made by the
compiler

— All bindings for identifiers can be resolved by
examining the program

— Typically, we choose the most recent, active
binding made at compile time

— Most compiled languages, C and Pascal included,
employ static scope rules 3

Copyright © 2005 Eisevi

Scope Rules

* The classical example of static scope rules is
the most closely nested rule used in block
structured languages such as Algol 60 and
Pascal
— An identifier is known in the scope in which it is

declared and in each enclosed scope, unless it is
re-declared in an enclosed scope
— To resolve a reference to an identifier, we examine

the local scope and statically enclosing scopes
until a binding is found

Copyright © 2005 Elsevier

Scope Rules

+ We will see classes - a relative of modules - later
on, when discussing abstraction and object-
oriented languages

— These have even more sophisticated (static) scope
rules

* Euclid is an example of a language with
lexically-nested scopes in which all scopes are
closed

— rules were designed to avoid ALIASES, which
complicate optimization and correctness arguments;

Copyright © 2005 Elsevier

Scope Rules

* Note that the bindings created in a
subroutine are destroyed at subroutine exit

— The modules of Modula, Ada, etc., give you
closed scopes without the limited lifetime

— Bindings to variables declared in a module are
inactive outside the module, not destroyed

— The same sort of effect can be achieved in

many languages with own (Algol term) or static
(C term) variables (see Figure 3.5)

Copyright © 2005 Elsevier

Scope Rules

¢ Access to non-local variables STATIC LINKS

— Each frame points to the frame of the (correct
instance of) the routine inside which it was
declared

— In the absence of formal subroutines, correct means
closest to the top of the stack

— You access a variable in a scope k levels out by
following k static links and then using the known
offset within the frame thus found

¢ More details in Chapter 8

Copyright © 2005 Elsevier




Scope Rules

Copyright © 2005 Elsevier

Scope Rules

* The key idea in static scope rules is that
bindings are defined by the physical (lexical)
structure of the program.

» With dynamic scope rules, bindings depend
on the current state of program execution
— They cannot always be resolved by examining the
program because they are dependent on calling
sequences
— To resolve a reference, we use the most recent,
active binding made at run time

Copyright © 2005 Elsevier

Scope Rules

* Dynamic scope rules are usually

encountered in interpreted languages
— early LISP dialects assumed dynamic scope
rules.

+ Such languages do not normally have
type checking at compile time because
type determination isn't always possible
when dynamic scope rules are in effect

Copyright © 2005 Elsevier

Scope Rules
Example: Static vs. Dynamic

program scopes (input, output );

var a : integer;
procedure first;

begin a := 1; end;
procedure second;

var a : integer;

begin first; end;
begin

a := 2; second; write(a);
end.

Copyright © 2005 Elsevier

Scope Rules
Example: Static vs. Dynamic

« If static scope rules are in effect (as would be
the case in Pascal), the program prints a 1

« If dynamic scope rules are in effect, the
program prints a 2

« Why the difference? At issue is whether the
assignment to the variable a in procedure first
changes the variable a declared in the main
program or the variable a declared in
procedure second

Copyright © 2005 Elsevier

Scope Rules

Example: Static vs. Dynamic

» Static scope rules require that the reference
resolve to the most recent, compile-time binding,
namely the global variable a

* Dynamic scope rules, on the other hand, require
that we choose the most recent, active binding at
run time

— Perhaps the most common use of dynamic scope rules
is to provide implicit parameters to subroutines
— This is generally considered bad programming
practice nowadays
* Alternative mechanisms exist

— static variables that can be modified by auxiliary routines
— default and optional parameters

Copyright © 2005 Elsevier




Scope Rules
Example: Static vs. Dynamic

e At run time we create a binding for a when we
enter the main program.

* Then we create another binding for a when we
enter procedure second

— This is the most recent, active binding when
procedure first is executed

— Thus, we modify the variable local to procedure
second, not the global variable

— However, we write the global variable because the

variable a local to procedure second is no longe:
Copyign© 2005 i
active

Binding of Referencing Environments

» Accessing variables with dynamic scope:

— (1) keep a stack (association list) of all active
variables

* When you need to find a variable, hunt down from
top of stack

« This is equivalent to searching the activation records
on the dynamic chain

Copyright © 2005 Elsevier

Binding of Referencing Environments

» Accessing variables with dynamic scope:

— (2) keep a central table with one slot for every
variable name

« If names cannot be created at run time, the table
layout (and the location of every slot) can be fixed at
compile time

 Otherwise, you'll need a hash function or something
to do lookup

 Every subroutine changes the table entries for its
locals at entry and exit.

Copyright © 2005 Elsevier

Binding of Referencing Environments

* (1) gives you slow access but fast calls

* (2) gives you slow calls but fast access

* In effect, variable lookup in a dynamically-
scoped language corresponds to symbol
table lookup in a statically-scoped language

* Because static scope rules tend to be more
complicated, however, the data structure
and lookup algorithm also have to be more
complicated

Copyright © 2005 Elsevier

Binding of Referencing Environments

+ REFERENCING ENVIRONMENT of a
statement at run time is the set of active
bindings

+ A referencing environment corresponds to a
collection of scopes that are examined (in
order) to find a binding

Copyright © 2005 Elsevier

Binding of Referencing Environments

¢ SCOPE RULES determine that collection
and its order

* BINDING RULES determine which
instance of a scope should be used to
resolve references when calling a procedure
that was passed as a parameter

— they govern the binding of referencing
environments to formal procedures

Copyright © 2005 Elsevier




Binding within a Scope
* Aliasing
— What are aliases good for? (consider uses of

FORTRAN equivalence)

* space saving - modern data allocation methods are
better

 multiple representations - unions are better
* linked data structures - legit

— Also, aliases arise in parameter passing as an
unfortunate side effect

* Euclid scope rules are designed to prevent this

Copyright © 2005 Elsevier

Binding within a Scope

e [t's worth distinguishing between some closely
related concepts

— overloaded functions - two different things with
the same name; in C++

e overload norm
int norm (int a) {return a>0 ? a : -a;)
complex norm (complex c ) { //
— polymorphic functions -- one thing that works in
more then one way
¢ in Modula-2: function min (A : array of integer); ...
e in Smalltalk

Copyright © 2005 Elsevier

Binding within a Scope

e Overloading
— some overloading happens in almost all
languages
e integer + v. real +
e read and write in Pascal
e function return in Pascal
— some languages get into overloading in a big
way
e Ada (see Figure 3.18 for examples)
o C++ (see Figure 3.19 for examples)

Copyright © 2005 Elsevier

Binding within a Scope

e [t's worth distinguishing between some
closely related concepts (2)

— generic functions (modules, etc.) - a syntactic
template that can be instantiated in more than
one way at compile time

® via macro processors in C++
® built-in in C++

e in Clu

e in Ada

Copyright © 2005 Elsevier

Separate Compilation

e Separately-compiled files in C provide a
sort of poor person's modules:

— Rules for how variables work with separate
compilation are messy

— Language has been jerry-rigged to match the
behavior of the linker

— Static on a function or variable outside a
function means it is usable only in the current
source file

o This static is a different notion from the static

variables inside a function
Copyright © 2005 Elsevier

Separate Compilation

e Separately-compiled files in C (continued)

— Extern on a variable or function means that it is
declared in another source file

— Functions headers without bodies are extern by
default

— Extern declarations are interpreted as forward
declarations if a later declaration overrides
them

Copyright © 2005 Elsevier




Separate Compilation

e Separately-compiled files in C (continued)

— Variables or functions (with bodies) that don't say
static or extern are either global or common (a
Fortran term)

e Functions and variables that are given initial values are
global
® Variables that are not given initial values are common

— Matching common declarations in different files

refer to the same variable

o They also refer to the same variable as a matching
global declaration

Copyright © 2005 Elsevier

Conclusions

e The morals of the story:
— language features can be surprisingly subtle

— designing languages to make life easier for the
compiler writer can be a GOOD THING

— most of the languages that are easy to
understand are easy to compile, and vice versa

Copyright © 2005 Elsevier

Conclusions

e A language that is easy to compile often
leads to
— a language that is easy to understand

— more good compilers on more machines
(compare Pascal and Adal)

— better (faster) code

— fewer compiler bugs

— smaller, cheaper, faster compilers
— better diagnostics

Copyright © 2005 Elsevier

Chapter 5::
Target Machine Architecture

Programming Language Pragmatics

Michael L. Scott

Copyright © 2005 Elsevier

Assembly-Level View

¢ As mentioned early in this course, a compiler is
simply a translator
— It translates programs written in one language into
programs written in
another language
® This other language can be almost anything

* Most of the time, however, it's the machine language for
some available computer

Copyright © 2005 Elsevier

Assembly-Level View

e Asareview, we will go over some of the
material most relevant to language
implementation, so that we can better
understand

— what the compiler has to do to your program
— why certain things are fast and others slow

— why certain things are easy to compile and
others aren't

Copyright © 2005 Elsevier




Assembly-Level View

e There are many different programming
languages and there are many different
machine languages

— Machine languages show considerably less
diversity than programming languages

— Traditionally, each machine language corresponds
to a different computer ARCHITECTURE

— The IMPLEMENTATION is how the architecture
is realized in hardware

Copyright © 2005 Elsevier

Assembly-Level View

e Formally, an architecture is the interface to
the hardware

— what it looks like to a user writing programs on
the bare machine.

e In the last 20 years, the line between these
has blurred to the point of disappearing

— compilers have to know a LOT about the
implementation to do a decent job

Copyright © 2005 Elsevier

Assembly-Level View

e Changes in hardware technology (e.g., how
many transistors can you fit on one chip?) have
made new implementation techniques possible

— the architecture was also modified
— Example: RISC (reduced instruction set computer)
revolution ~20 years ago

e In the discussion below, we will focus on
modern RISC architectures, with a limited
amount of coverage of their predecessors, the
CISC architectures

Copyright © 2005 Elsevier

Workstation Macro-Architecture

e Most modern computers consist of a collection
of DEVICES that talk to each other over a BUS
e From the point of view of language
implementation:
— the most important device is the PROCESSOR(S)
— the second most important is main memory

— other devices include: disks, keyboards, screens,
networks, general-purpose serial/parallel ports, etc.

Copyright © 2005 Elsevier

Workstation Macro-Architecture

¢ Almost all modern computers use the (von
Neumann) stored program concept:

— a program is simply a collection of bits in memory that the
computer interprets as instructions, rather than as integers,
floating point numbers, or some other sort of data

e What a processor does is repeatedly

— fetch an instruction from memory

— decode it - figure out what it says to do

— fetch any needed operands from registers or memory

— execute the operation, and

— store any result(s) back into registers or memory
Copyright © 2005 Elsevier

Workstation Macro-Architecture

¢ This set of operations is referred to as the fetch-

execute cycle
— The computer runs this cycle at a furious pace, never
stopping, regardless of the meaning of the instructions

® You can point a processor's instruction fetch logic at a long string of
floating point numbers and it will blithely begin to execute them; it will
do something, though that something probably won't make much sense

® Operating systems are designed so that when the computer has nothing
useful to do it is pointed at an infinite loop that it can execute furiously.
but harmlessly 2

Copyright © 2005 Elsevier




Workstation Macro-Architecture
e The crucial components of a typical processor
include a collection of FUNCTIONAL UNITS:

— hardware to decode instructions and drive the other
functional units

— hardware to fetch instructions and data from memory and
to store them back again if they are modified
— one or more arithmetic/logic units (ALUs) to do actual

computations

— registers to hold the most heavily-used parts of the state of
the computation

— hardware to move data among the various functional uni
and registers

Copyright © 2005 Elsevier

Memory Hierarchy

e Memory is too big to fit on one chip with a
processor

— Because memory is off-chip (in fact, on the
other side of the bus), getting at it is much
slower than getting at things on-chip

— Most computers therefore employ a MEMORY
HIERARCHY, in which things that are used
more often are kept close at hand

Copyright © 2005 Elsevier

Memory Hierarchy

typleal access time

typical capacity

whe typically

20 eyeles. Main mem AL SpErcemputer
station it is typically much slower. Disk and tape times

mevemment of physical parts.

Copyright © 2005 Elsevier




