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Names, Scopes, and Bindings (cont.)
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Review

* What is a regular expression ?

* What is a context-free grammar ?

e What is BNF ?

* What is a derivation ?

* What is a parse ?

* What are terminals/non-terminals/start
symbol ?

* What is Kleene star and how is it denoted ?

* What is binding ?
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Review

* What is early/late binding with respect to
OOP and Java in particular ?

* What is scope ?
e What is lifetime?

* What is the “general” basic relationship
between compile time/run time and
efficiency/flexibility ?

* What is the purpose of scope rules ?
« What is central to recursion ?
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Lifetime and Storage Management
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Lifetime and Storage Management

* Maintenance of stack is responsibility of
calling sequence and subroutine prolog and
epilog
— space is saved by putting as much in the prolog

and epilog as possible
— time may be saved by
* putting stuff in the caller instead
or
« combining what's known in both places
(interprocedural optimization)
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Scope Rules

* A scope is a program section of maximal size in
which no bindings change, or at least in which
no re-declarations are permitted (see below)

* In most languages with subroutines, we OPEN a
new scope on subroutine entry:

— create bindings for new local variables,

— deactivate bindings for global variables that are re-
declared (these variable are said to have a "hole" in
their scope)

— make references to variables
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Scope Rules
 On subroutine exit:
— destroy bindings for local variables
— reactivate bindings for global variables that were
deactivated
+ Algol 68:

— ELABORATION = process of creating bindings
when entering a scope

 Ada (re-popularized the term elaboration):

— storage may be allocated, tasks started, even
exceptions propagated as a result of the
elaboration of declarations
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Scope Rules

* With STATIC (LEXICAL) SCOPE RULES, a
scope is defined in terms of the physical
(lexical) structure of the program
— The determination of scopes can be made by the
compiler

— All bindings for identifiers can be resolved by
examining the program

— Typically, we choose the most recent, active
binding made at compile time

— Most compiled languages, C and Pascal included,
employ static scope rules 3

Copyright © 2005 Eisevi

Scope Rules

* The classical example of static scope rules is
the most closely nested rule used in block
structured languages such as Algol 60 and
Pascal
— An identifier is known in the scope in which it is

declared and in each enclosed scope, unless it is
re-declared in an enclosed scope
— To resolve a reference to an identifier, we examine

the local scope and statically enclosing scopes
until a binding is found
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Scope Rules

+ We will see classes - a relative of modules - later
on, when discussing abstraction and object-
oriented languages

— These have even more sophisticated (static) scope
rules

* Euclid is an example of a language with
lexically-nested scopes in which all scopes are
closed

— rules were designed to avoid ALIASES, which
complicate optimization and correctness arguments;
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Scope Rules

* Note that the bindings created in a
subroutine are destroyed at subroutine exit

— The modules of Modula, Ada, etc., give you
closed scopes without the limited lifetime

— Bindings to variables declared in a module are
inactive outside the module, not destroyed

— The same sort of effect can be achieved in

many languages with own (Algol term) or static
(C term) variables (see Figure 3.5)
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Scope Rules

¢ Access to non-local variables STATIC LINKS

— Each frame points to the frame of the (correct
instance of) the routine inside which it was
declared

— In the absence of formal subroutines, correct means
closest to the top of the stack

— You access a variable in a scope k levels out by
following k static links and then using the known
offset within the frame thus found

¢ More details in Chapter 8
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Scope Rules
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Scope Rules

* The key idea in static scope rules is that
bindings are defined by the physical (lexical)
structure of the program.

» With dynamic scope rules, bindings depend
on the current state of program execution
— They cannot always be resolved by examining the
program because they are dependent on calling
sequences
— To resolve a reference, we use the most recent,
active binding made at run time
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Scope Rules

* Dynamic scope rules are usually

encountered in interpreted languages
— early LISP dialects assumed dynamic scope
rules.

+ Such languages do not normally have
type checking at compile time because
type determination isn't always possible
when dynamic scope rules are in effect
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Scope Rules
Example: Static vs. Dynamic

program scopes (input, output );

var a : integer;
procedure first;

begin a := 1; end;
procedure second;

var a : integer;

begin first; end;
begin

a := 2; second; write(a);
end.
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Scope Rules
Example: Static vs. Dynamic

« If static scope rules are in effect (as would be
the case in Pascal), the program prints a 1

« If dynamic scope rules are in effect, the
program prints a 2

« Why the difference? At issue is whether the
assignment to the variable a in procedure first
changes the variable a declared in the main
program or the variable a declared in
procedure second
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Scope Rules

Example: Static vs. Dynamic

» Static scope rules require that the reference
resolve to the most recent, compile-time binding,
namely the global variable a

* Dynamic scope rules, on the other hand, require
that we choose the most recent, active binding at
run time

— Perhaps the most common use of dynamic scope rules
is to provide implicit parameters to subroutines
— This is generally considered bad programming
practice nowadays
* Alternative mechanisms exist

— static variables that can be modified by auxiliary routines
— default and optional parameters
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Scope Rules
Example: Static vs. Dynamic

e At run time we create a binding for a when we
enter the main program.

* Then we create another binding for a when we
enter procedure second

— This is the most recent, active binding when
procedure first is executed

— Thus, we modify the variable local to procedure
second, not the global variable

— However, we write the global variable because the

variable a local to procedure second is no longe:
Copyign© 2005 i
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Binding of Referencing Environments

» Accessing variables with dynamic scope:

— (1) keep a stack (association list) of all active
variables

* When you need to find a variable, hunt down from
top of stack

« This is equivalent to searching the activation records
on the dynamic chain
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Binding of Referencing Environments

» Accessing variables with dynamic scope:

— (2) keep a central table with one slot for every
variable name

« If names cannot be created at run time, the table
layout (and the location of every slot) can be fixed at
compile time

 Otherwise, you'll need a hash function or something
to do lookup

 Every subroutine changes the table entries for its
locals at entry and exit.
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Binding of Referencing Environments

* (1) gives you slow access but fast calls

* (2) gives you slow calls but fast access

* In effect, variable lookup in a dynamically-
scoped language corresponds to symbol
table lookup in a statically-scoped language

* Because static scope rules tend to be more
complicated, however, the data structure
and lookup algorithm also have to be more
complicated
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Binding of Referencing Environments

+ REFERENCING ENVIRONMENT of a
statement at run time is the set of active
bindings

+ A referencing environment corresponds to a
collection of scopes that are examined (in
order) to find a binding
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Binding of Referencing Environments

¢ SCOPE RULES determine that collection
and its order

* BINDING RULES determine which
instance of a scope should be used to
resolve references when calling a procedure
that was passed as a parameter

— they govern the binding of referencing
environments to formal procedures
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Binding within a Scope
* Aliasing
— What are aliases good for? (consider uses of

FORTRAN equivalence)

* space saving - modern data allocation methods are
better

 multiple representations - unions are better
* linked data structures - legit

— Also, aliases arise in parameter passing as an
unfortunate side effect

* Euclid scope rules are designed to prevent this
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Binding within a Scope

e [t's worth distinguishing between some closely
related concepts

— overloaded functions - two different things with
the same name; in C++

e overload norm
int norm (int a) {return a>0 ? a : -a;)
complex norm (complex c ) { //
— polymorphic functions -- one thing that works in
more then one way
¢ in Modula-2: function min (A : array of integer); ...
e in Smalltalk
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Binding within a Scope

e Overloading
— some overloading happens in almost all
languages
e integer + v. real +
e read and write in Pascal
e function return in Pascal
— some languages get into overloading in a big
way
e Ada (see Figure 3.18 for examples)
o C++ (see Figure 3.19 for examples)
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Binding within a Scope

e [t's worth distinguishing between some
closely related concepts (2)

— generic functions (modules, etc.) - a syntactic
template that can be instantiated in more than
one way at compile time

® via macro processors in C++
® built-in in C++

e in Clu

e in Ada
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Separate Compilation

e Separately-compiled files in C provide a
sort of poor person's modules:

— Rules for how variables work with separate
compilation are messy

— Language has been jerry-rigged to match the
behavior of the linker

— Static on a function or variable outside a
function means it is usable only in the current
source file

o This static is a different notion from the static

variables inside a function
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Separate Compilation

e Separately-compiled files in C (continued)

— Extern on a variable or function means that it is
declared in another source file

— Functions headers without bodies are extern by
default

— Extern declarations are interpreted as forward
declarations if a later declaration overrides
them
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Separate Compilation

e Separately-compiled files in C (continued)

— Variables or functions (with bodies) that don't say
static or extern are either global or common (a
Fortran term)

e Functions and variables that are given initial values are
global
® Variables that are not given initial values are common

— Matching common declarations in different files

refer to the same variable

o They also refer to the same variable as a matching
global declaration
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Conclusions

e The morals of the story:
— language features can be surprisingly subtle

— designing languages to make life easier for the
compiler writer can be a GOOD THING

— most of the languages that are easy to
understand are easy to compile, and vice versa
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Conclusions

e A language that is easy to compile often
leads to
— a language that is easy to understand

— more good compilers on more machines
(compare Pascal and Adal)

— better (faster) code

— fewer compiler bugs

— smaller, cheaper, faster compilers
— better diagnostics
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Chapter 5::
Target Machine Architecture

Programming Language Pragmatics

Michael L. Scott
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Assembly-Level View

¢ As mentioned early in this course, a compiler is
simply a translator
— It translates programs written in one language into
programs written in
another language
® This other language can be almost anything

* Most of the time, however, it's the machine language for
some available computer
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Assembly-Level View

e Asareview, we will go over some of the
material most relevant to language
implementation, so that we can better
understand

— what the compiler has to do to your program
— why certain things are fast and others slow

— why certain things are easy to compile and
others aren't
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Assembly-Level View

e There are many different programming
languages and there are many different
machine languages

— Machine languages show considerably less
diversity than programming languages

— Traditionally, each machine language corresponds
to a different computer ARCHITECTURE

— The IMPLEMENTATION is how the architecture
is realized in hardware
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Assembly-Level View

e Formally, an architecture is the interface to
the hardware

— what it looks like to a user writing programs on
the bare machine.

e In the last 20 years, the line between these
has blurred to the point of disappearing

— compilers have to know a LOT about the
implementation to do a decent job
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Assembly-Level View

e Changes in hardware technology (e.g., how
many transistors can you fit on one chip?) have
made new implementation techniques possible

— the architecture was also modified
— Example: RISC (reduced instruction set computer)
revolution ~20 years ago

e In the discussion below, we will focus on
modern RISC architectures, with a limited
amount of coverage of their predecessors, the
CISC architectures
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Workstation Macro-Architecture

e Most modern computers consist of a collection
of DEVICES that talk to each other over a BUS
e From the point of view of language
implementation:
— the most important device is the PROCESSOR(S)
— the second most important is main memory

— other devices include: disks, keyboards, screens,
networks, general-purpose serial/parallel ports, etc.
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Workstation Macro-Architecture

¢ Almost all modern computers use the (von
Neumann) stored program concept:

— a program is simply a collection of bits in memory that the
computer interprets as instructions, rather than as integers,
floating point numbers, or some other sort of data

e What a processor does is repeatedly

— fetch an instruction from memory

— decode it - figure out what it says to do

— fetch any needed operands from registers or memory

— execute the operation, and

— store any result(s) back into registers or memory
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Workstation Macro-Architecture

¢ This set of operations is referred to as the fetch-

execute cycle
— The computer runs this cycle at a furious pace, never
stopping, regardless of the meaning of the instructions

® You can point a processor's instruction fetch logic at a long string of
floating point numbers and it will blithely begin to execute them; it will
do something, though that something probably won't make much sense

® Operating systems are designed so that when the computer has nothing
useful to do it is pointed at an infinite loop that it can execute furiously.
but harmlessly 2
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Workstation Macro-Architecture
e The crucial components of a typical processor
include a collection of FUNCTIONAL UNITS:

— hardware to decode instructions and drive the other
functional units

— hardware to fetch instructions and data from memory and
to store them back again if they are modified
— one or more arithmetic/logic units (ALUs) to do actual

computations

— registers to hold the most heavily-used parts of the state of
the computation

— hardware to move data among the various functional uni
and registers
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Memory Hierarchy

e Memory is too big to fit on one chip with a
processor

— Because memory is off-chip (in fact, on the
other side of the bus), getting at it is much
slower than getting at things on-chip

— Most computers therefore employ a MEMORY
HIERARCHY, in which things that are used
more often are kept close at hand
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Memory Hierarchy
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