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Chapter 3::
Names, Scopes, and Bindings (cont.)

Programming Language Pragmatics
Michael L. Scott
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Review

• What is a regular expression ?
• What is a context-free grammar ?
• What is BNF ?
• What is a derivation ?
• What is a parse ?
• What are terminals/non-terminals/start 

symbol ?
• What is Kleene star and how is it denoted ?
• What is binding ?
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Review

• What is early/late binding with respect to 
OOP and Java in particular ?

• What is scope ?
• What is lifetime?
• What is the “general” basic relationship 

between compile time/run time and 
efficiency/flexibility ?

• What is the purpose of scope rules ?
• What is central to recursion ?
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Lifetime and Storage Management

• Maintenance of stack is responsibility of 
calling sequence and subroutine prolog and 
epilog
– space is saved by putting as much in the prolog 

and epilog as possible
– time may be saved by 

• putting stuff in the caller instead
or

• combining what's known in both places
(interprocedural optimization)

Copyright © 2005 Elsevier

Lifetime and Storage Management

• Heap for dynamic allocation
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Scope Rules

• A scope is a program section of maximal size in 
which no bindings change, or at least in which 
no re-declarations are permitted (see below)

• In most languages with subroutines, we OPEN a 
new scope on subroutine entry:
– create bindings for new local variables,
– deactivate bindings for global variables that are re-

declared (these variable are said to have a "hole" in 
their scope)

– make references to variables
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Scope Rules
• On subroutine exit:

– destroy bindings for local variables
– reactivate bindings for global variables that were 

deactivated
• Algol 68:

– ELABORATION = process of creating bindings 
when entering a scope

• Ada (re-popularized the term elaboration):
– storage may be allocated, tasks started, even 

exceptions propagated as a result of the 
elaboration of declarations
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Scope Rules

• With STATIC (LEXICAL) SCOPE RULES, a 
scope is defined in terms of the physical 
(lexical) structure of the program
– The determination of scopes can be made by the 

compiler
– All bindings for identifiers can be resolved by 

examining the program
– Typically, we choose the most recent, active 

binding made at compile time
– Most compiled languages, C and Pascal included, 

employ static scope rules
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Scope Rules

• The classical example of static scope rules is 
the most closely nested rule used in block 
structured languages such as Algol 60 and 
Pascal 
– An identifier is known in the scope in which it is 

declared and in each enclosed scope, unless it is 
re-declared in an enclosed scope 

– To resolve a reference to an identifier, we examine 
the local scope and statically enclosing scopes 
until a binding is found
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Scope Rules

• We will see classes - a relative of modules - later 
on, when discussing abstraction and object-
oriented languages
– These have even more sophisticated (static) scope 

rules
• Euclid is an example of a language with 

lexically-nested scopes in which all scopes are 
closed
– rules were designed to avoid ALIASES, which 

complicate optimization and correctness arguments
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Scope Rules

• Note that the bindings created in a 
subroutine are destroyed at subroutine exit
– The modules of Modula, Ada, etc., give you 

closed scopes without the limited lifetime
– Bindings to variables declared in a module are 

inactive outside the module, not destroyed 
– The same sort of effect can be achieved in 

many languages with own (Algol term) or static
(C term) variables (see Figure 3.5)
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Scope Rules

• Access to non-local variables STATIC LINKS
– Each frame points to the frame of the (correct 

instance of)  the routine inside which it was 
declared

– In the absence of formal subroutines, correct means 
closest to the top of the stack

– You access a variable in a scope k levels out by 
following k static links and then using the known 
offset within the frame thus found

• More details in Chapter 8
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Scope Rules
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Scope Rules

• The key idea in static scope rules is that 
bindings are defined by the physical (lexical) 
structure of the program.

• With dynamic scope rules, bindings depend 
on the current state of program execution
– They cannot always be resolved by examining the 

program because they are dependent on calling 
sequences

– To resolve a reference, we use the most recent, 
active binding made at run time
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Scope Rules

• Dynamic scope rules are usually 
encountered in interpreted languages
– early LISP dialects assumed dynamic scope 

rules.  
• Such languages do not normally have 

type checking at compile time because 
type determination isn't always possible 
when dynamic scope rules are in effect
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program scopes (input, output );
var a : integer;
procedure first;

begin a := 1; end;
procedure second;

var a : integer;
begin first; end;

begin
a := 2; second; write(a);

end.

Scope Rules 
Example: Static vs. Dynamic 
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• If static scope rules are in effect (as would be 
the case in Pascal), the program prints a 1

• If dynamic scope rules are in effect, the 
program prints a 2

• Why the difference?  At issue is whether the 
assignment to the variable a in procedure first
changes the variable a declared in the main 
program or the variable a declared in 
procedure second

Scope Rules 
Example: Static vs. Dynamic 
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• Static scope rules require that the reference 
resolve to the most recent, compile-time binding, 
namely the global variable a

• Dynamic scope rules, on the other hand, require 
that we choose the most recent, active binding at 
run time
– Perhaps the most common use of dynamic scope rules 

is to provide implicit parameters to subroutines
– This is generally considered bad programming 

practice nowadays
• Alternative mechanisms exist

– static variables that can be modified by auxiliary routines
– default and optional parameters 

Scope Rules 
Example: Static vs. Dynamic 
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• At run time we create a binding for a when we 
enter the main program.  

• Then we create another binding for a when we 
enter procedure second
– This is the most recent, active binding when 

procedure first is executed
– Thus, we modify the variable local to procedure 

second, not the global variable
– However, we write the global variable because the 

variable a local to procedure second is no longer 
active

Scope Rules 
Example: Static vs. Dynamic 
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Binding of Referencing Environments

• Accessing variables with dynamic scope:
– (1) keep a stack (association list) of all active 

variables
• When you need to find a variable, hunt down from 

top of stack
• This is equivalent to searching the activation records 

on the dynamic chain
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Binding of Referencing Environments

• Accessing variables with dynamic scope:
– (2) keep a central table with one slot for every 

variable name
• If names cannot be created at run time, the table 

layout (and the location of every slot) can be fixed at 
compile time

• Otherwise, you'll need a hash function or something 
to do lookup

• Every subroutine changes the table entries for its 
locals at entry and exit.
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Binding of Referencing Environments

• (1) gives you slow access but fast calls
• (2) gives you slow calls but fast access
• In effect, variable lookup in a dynamically-

scoped language corresponds to symbol 
table lookup in a statically-scoped language

• Because static scope rules tend to be more 
complicated, however, the data structure 
and lookup algorithm also have to be more 
complicated
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Binding of Referencing Environments

• REFERENCING ENVIRONMENT of a 
statement at run time is the set of active 
bindings

• A referencing environment corresponds to a 
collection of scopes that are examined (in 
order) to find a binding
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Binding of Referencing Environments

• SCOPE RULES determine that collection 
and its order

• BINDING RULES determine which 
instance of a scope should be used to 
resolve references when calling a procedure 
that was passed as a parameter
– they govern the binding of referencing 

environments to formal procedures
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Binding within a Scope

• Aliasing
– What are aliases good for? (consider uses of 

FORTRAN equivalence)
• space saving - modern data allocation methods are 

better
• multiple representations - unions are better
• linked data structures   - legit

– Also, aliases arise in parameter passing as an 
unfortunate side effect

• Euclid scope rules are designed to prevent this
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Binding within a Scope

• Overloading
– some overloading happens in almost all 

languages
• integer + v. real +
• read and write in Pascal
• function return in Pascal

– some languages get into overloading in a big 
way
• Ada (see Figure 3.18 for examples)
• C++ (see Figure 3.19 for examples)
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• It's worth distinguishing between some closely 
related concepts
– overloaded functions - two different things with 

the same name; in C++
• overload norm
int norm (int a){return a>0 ? a : -a;)
complex norm (complex c ) { // ...

– polymorphic functions -- one thing that works in 
more then one way
• in Modula-2: function min (A : array of integer); …
• in Smalltalk

Binding within a Scope
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• It's worth distinguishing between some 
closely related concepts (2)
– generic functions (modules, etc.) - a syntactic 

template that can be instantiated in more than 
one way at compile time
• via macro processors in C++
• built-in in C++
• in Clu
• in Ada

Binding within a Scope

Copyright © 2005 Elsevier

Separate Compilation

• Separately-compiled files in C provide a 
sort of poor person's modules:
– Rules for how variables work with separate 

compilation are messy
– Language has been jerry-rigged to match the 

behavior of the linker
– Static on a function or variable outside a 

function means it is usable only in the current 
source file
• This static is a different notion from the static

variables inside a function
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Separate Compilation

• Separately-compiled files in C (continued)
– Extern on a variable or function means that it is 

declared in another source file   
– Functions headers without bodies are extern by 

default    
– Extern declarations are interpreted as forward 

declarations if a later declaration overrides 
them
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Separate Compilation

• Separately-compiled files in C (continued)
– Variables or functions (with bodies) that don't say 

static or extern are either global or common (a 
Fortran term)
• Functions and variables that are given initial values are 

global
• Variables that are not given initial values are common

–Matching common declarations in different files 
refer to the same variable
• They also refer to the same variable as a matching 

global declaration
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Conclusions

• The morals of the story:
– language features can be surprisingly subtle
– designing languages to make life easier for the 

compiler writer can be a GOOD THING
– most of the languages that are easy to 

understand are easy to compile, and vice versa
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Conclusions

• A language that is easy to compile often 
leads to
– a language that is easy to understand
– more good compilers on more machines 

(compare Pascal and Ada!)
– better (faster) code
– fewer compiler bugs
– smaller, cheaper, faster compilers
– better diagnostics
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Chapter 5:: 
Target Machine Architecture

Programming Language Pragmatics
Michael L. Scott
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Assembly-Level View

• As mentioned early in this course, a compiler is 
simply a translator
– It translates programs written in one language into 

programs written in
another language
• This other language can be almost anything
• Most of the time, however, it's the machine language for 

some available computer
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Assembly-Level View

• As a review, we will go over some of the
material most relevant to language 
implementation, so that we can better
understand
– what the compiler has to do to your program
– why certain things are fast and others slow
– why certain things are easy to compile and 

others aren't
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Assembly-Level View

• There are many different programming 
languages and there are many different 
machine languages
–Machine languages show considerably less 

diversity than programming languages
– Traditionally, each machine language corresponds 

to a different computer ARCHITECTURE
– The IMPLEMENTATION is how the architecture 

is realized in hardware
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Assembly-Level View

• Formally, an architecture is the interface to 
the hardware
– what it looks like to a user writing programs on 

the bare machine.

• In the last 20 years, the line between these 
has blurred to the point of disappearing
– compilers have to know a LOT about the 

implementation to do a decent job
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Assembly-Level View

• Changes in hardware technology (e.g., how 
many transistors can you fit on one chip?) have 
made new implementation techniques possible
– the architecture was also modified
– Example: RISC (reduced instruction set computer) 

revolution ~20 years ago
• In the discussion below, we will focus on 

modern RISC architectures, with a limited 
amount of coverage of their predecessors, the 
CISC architectures
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Workstation Macro-Architecture

• Most modern computers consist of a collection 
of DEVICES that talk to each other over a BUS
• From the point of view of language 

implementation:
– the most important device is the PROCESSOR(S)
– the second most important is main memory
– other devices include: disks, keyboards, screens, 

networks, general-purpose serial/parallel ports, etc.  
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Workstation Macro-Architecture
• Almost all modern computers use the (von 

Neumann) stored program concept: 
– a program is simply a collection of bits in memory that the 

computer interprets as instructions, rather than as integers, 
floating point numbers, or some other sort of data 

• What a processor does is repeatedly
– fetch an instruction from memory
– decode it - figure out what it says to do
– fetch any needed operands from registers or memory
– execute the operation, and
– store any result(s) back into registers or memory
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Workstation Macro-Architecture

• This set of operations is referred to as the fetch-
execute cycle
– The computer runs this cycle at a furious pace, never 

stopping, regardless of the meaning of the instructions
• You can point a processor's instruction fetch logic at a long string of 

floating point numbers and it will blithely begin to execute them; it will 
do something, though that something probably won't make much sense
• Operating systems are designed so that when the computer has nothing 

useful to do it is pointed at an infinite loop that it can execute furiously, 
but harmlessly
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Workstation Macro-Architecture
• The crucial components of a typical processor 

include a collection of FUNCTIONAL UNITS:
– hardware to decode instructions and drive the other 

functional units
– hardware to fetch instructions and data from memory and 

to store them back again if they are modified
– one or more arithmetic/logic units (ALUs) to do actual 

computations
– registers to hold the most heavily-used parts of the state of 

the computation
– hardware to move data among the various functional units 

and registers
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• Memory is too big to fit on one chip with a 
processor
– Because memory is off-chip (in fact, on the 

other side of the bus), getting at it is much
slower than getting at things on-chip
–Most computers therefore employ a MEMORY 

HIERARCHY, in which things that are used 
more often are kept close at hand

Memory Hierarchy
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Memory Hierarchy


