
1

Copyright © 2005 Elsevier

Chapter 5::
Target Machine Architecture (cont.)

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Review

• Describe the heap for dynamic memory
allocation ?

• What is scope and with most languages how
what happens upon entering and exiting a
subroutine ?

• What are static (lexical) scope rules ?
• What are dynamic scope rules ?
• Can dynamic scope rules always be

determined by examining the program ?

Copyright © 2005 Elsevier

Review

• Where are dynamic scope rules typically
encountered ?

• What are some approaches to maintaining
dynamic scope ?

• What is a referencing environment ?
• What is aliasing and what are its advantages?
• What is overloading ?
• What are some concepts related to

overloading ?

2

Copyright © 2005 Elsevier

Review

• What are generic functions ?
• What are separately compiled files and how

can we access variables/methods that have
been declared/compiled in separate files ?

Copyright © 2005 Elsevier

program scopes (input, output);
var a : integer;
procedure first;

begin
a := 1;

end;
procedure second;

var a : integer;
begin

first;
end;

begin
a := 2;
if read_integer()> 0

second;
else

first();
write(a);

Scope Rules
Example: Static vs. Dynamic Revisited

Copyright © 2005 Elsevier

Workstation Macro-Architecture

• This set of operations is referred to as the fetch-
execute cycle
– The computer runs this cycle at a furious pace, never

stopping, regardless of the meaning of the instructions
• You can point a processor's instruction fetch logic at a long string of

floating point numbers and it will blithely begin to execute them; it will
do something, though that something probably won't make much sense
• Operating systems are designed so that when the computer has nothing

useful to do it is pointed at an infinite loop that it can execute furiously,
but harmlessly

3

Copyright © 2005 Elsevier

Workstation Macro-Architecture
• The crucial components of a typical processor

include a collection of FUNCTIONAL UNITS:
– hardware to decode instructions and drive the other

functional units
– hardware to fetch instructions and data from memory and

to store them back again if they are modified
– one or more arithmetic/logic units (ALUs) to do actual

computations
– registers to hold the most heavily-used parts of the state of

the computation
– hardware to move data among the various functional units

and registers

Copyright © 2005 Elsevier

• Memory is too big to fit on one chip with a
processor
– Because memory is off-chip (in fact, on the

other side of the bus), getting at it is much
slower than getting at things on-chip
–Most computers therefore employ a MEMORY

HIERARCHY, in which things that are used
more often are kept close at hand

Memory Hierarchy

Copyright © 2005 Elsevier

Memory Hierarchy

4

Copyright © 2005 Elsevier

• Some of these levels are visible to the
programmer; others are not
• For our purposes here, the levels that matter

are registers and main memory
• Registers are special locations that can hold (a

very small amount of) data that can be
accessed very quickly
– A typical RISC machine has a few (often two) sets

of registers that are used to hold integer and
floating point operands

Memory Hierarchy

Copyright © 2005 Elsevier

• It also has several special-purpose registers,
including the
– program counter (PC)
• holds the address of the next instruction to be executed
• usually incremented during fetch-execute cycle

– processor status register
• holds a variety of bits of little interest in this course

(privilege level, interrupt priority level, trap enable bits)

Memory Hierarchy

Copyright © 2005 Elsevier

• Memory is usually (but not always) byte-
addressable, meaning that each 8-bit piece
has a unique address
– Data longer than 8 bits occupy multiple bytes
– Typically
• an integer occupies 16, 32, or (recently) 64 bits
• a floating point number occupies 32, 64, or

(recently) 128 bits

Data Representation

5

Copyright © 2005 Elsevier

• It is important to note that, unlike data in high-
level programming languages, memory is
untyped (bits are just bits)
• Operations are typed, in the sense that different

operations interpret the bits in memory in
different ways
• Typical DATA FORMATS include
– instruction
– integer (various lengths)
– floating point (various lengths)

Data Representation

Copyright © 2005 Elsevier

• Other concepts we will not detail but
covered in other courses
– Big-endian vs. little-endian (for details see

Figure 5.2)
– Integer arithmetic
• 2's complement arithmetic

– Floating-point arithmetic
• IEEE standard, 1985

Data Representation

Copyright © 2005 Elsevier

Data Representation

6

Copyright © 2005 Elsevier

• The set of instructions executed by a
modern processor may include:
– data movement (load, store, push, pop, movem,

swap - registers)
– arithmetic and logical (negate, extend, add,

subtract, multiply, divide, and, or, shift)
– control transfer (jump, call, trap - jump into the

operating system, return - from call or trap,
conditional branch)

Instruction-Set Architecture

Copyright © 2005 Elsevier

• Instructions can specify many different ways to
obtain their data (Addressing Modes)
– data in instruction
– data in register
– address of data in instruction
– address of data in register
– address of data computed from two or more values

contained in the instruction and/or registers

Instruction-Set Architecture
Addressing Modes

Copyright © 2005 Elsevier

• On a RISC machine, arithmetic/logic instructions use
only the first two of these ADDRESSING MODES
– load and store instructions use the others

• On a CISC machine, all addressing modes are generally
available to all instructions
– CISC machines typically have a richer set of addressing

modes, including some that perform
• multiple indirections, and/or
• arithmetic computations on values in memory in order to calculate an

effective address

Instruction-Set Architecture
Addressing Modes

7

Copyright © 2005 Elsevier

• As technology advances, there are
occasionally times when some threshold is
crossed that suddenly makes it possible to
design machines in a very different way
– One example of such a paradigm shift

occurred in the mid 1980s with the
development of RISC (reduced instruction set
computer) architectures

Architecture Implementation

Copyright © 2005 Elsevier

• During the 1950s and the early 1960s, the
instruction set of a typical computer was
implemented by soldering together large
numbers of discrete components that
performed the required operations
• To build a faster computer, one generally designed

extra, more powerful instructions, which required
extra hardware
• This has the unfortunate effect of requiring

assembly language programmers to learn a new
language

Architecture Implementation

Copyright © 2005 Elsevier

• IBM hit upon an implementation technique
called MICROPROGRAMMING:
– same instruction set across a whole line of

computers, from cheap to fast machines
– basic idea of microprogramming
• build a microengine in hardware that executed a

interpreter program in firmware
– interpreter implemented IBM 360 instruction set

• more expensive machines had fancier microengines
– more of the 360 functionality in hardware
– top-of-the-line machines had everything in hardware

Architecture Implementation

8

Copyright © 2005 Elsevier

• Microprogramming makes it easy to extend the
instruction set
• people ran studies to identify instructions that often

occurred in sequence (e.g., the sequence that jumps to a
subroutine and updates bookkeeping information in the
stack)
• then provided new instructions that performed the function

of the sequence
• By clever programming in the firmware, it was generally

possible to make the new instruction faster than the old
sequence, and programs got faster.

Architecture Implementation

Copyright © 2005 Elsevier

• The microcomputer revolution of the late 1970s
(another paradigm shift) occurred when it became
possible to fit a microengine onto a single chip
(microprocessor):
– personal computers were born
– by the mid 1980s, VLSI technology reached the point

where it was possible to eliminate the microengine
and still implement a processor on a single chip

Architecture Implementation

Copyright © 2005 Elsevier

• With a hardware-only processor on one chip,
it then became possible to apply certain
performance-enhancing tricks to the
implementation, but only if the instruction set
was very simple and predictable
– This was the RISC revolution
– Its philosophy was to give up "nice", fancy

features in order to make common operations fast

Architecture Implementation

9

Copyright © 2005 Elsevier

• RISC machines:
– a common misconception is that small instruction

sets are the distinguishing characteristic of a RISC
machine
– better characterization: RISC machines are

machines in which at least one new instruction can
(in the absence of conflicts) be started every cycle
(hardware clock tick)
• all possible mechanisms have been exploited to

minimize the duration of a cycle, and to maximize the
number of functional units that operate in parallel
during a given cycle

Architecture Implementation

Copyright © 2005 Elsevier

• Reduced cycle time comes from making all
instructions simple and regular
– Simple instructions never have to run slowly

because of extra logic necessary to implement
the complicated instructions
–Maximal parallelism comes from giving the

instructions a very regular, predictable format
• the interactions between instructions are clear and

the processor can begin working on the next
instruction before the previous one has finished

Architecture Implementation

Copyright © 2005 Elsevier

• PIPELINING is probably the most
important performance enhancing trick
– It works kind of like this:

TIME →
fetch decode fetch execute store
instr instr data data

fetch decode fetch execute store
instr instr data data

fetch decode fetch execute store
instr instr data data

Compiling for Modern Processors

10

Copyright © 2005 Elsevier

• The processor has to be careful not to execute
an instruction that depends on a previous
instruction that hasn't finished yet
– The compiler can improve the performance of the

processor by generating code in which the number
of dependencies that would stall the pipeline is
minimized
– This is called INSTRUCTION SCHEDULING; it's

one of the most important machine-specific
optimizations for modern compilers

Compiling for Modern Processors

Copyright © 2005 Elsevier

• Loads and load delays are influenced by
– Dependences
• Flow dependence
• Anti-dependence
• Output dependence

• Branches
– since control can go both ways, branches create

delays

Compiling for Modern Processors

Copyright © 2005 Elsevier

Compiling for Modern Processors

• Usual goal: minimize pipeline stalls
• Delay slots

– loads and branches take longer than ordinary instructions
– loads have to go to memory, which is slow
– branches disrupt the pipeline
– processor have interlock hardware
– early RISC machines often provided delay slots for the

second (maybe third) cycle of a load or store instruction,
during which something else can occur

– the instruction in a branch delay slot gets executed whether
the branch occurs or not

11

Copyright © 2005 Elsevier

Compiling for Modern Processors
• Delay slots (continued)

– the instruction in a load delay slot can't use the loaded
value

– as pipelines have grown deeper, people have generally
realized that delay slots are more trouble than they're
worth
– most current processor implementations interlock all

loads, so you don't have to worry about the correctness
issues of load delay
– some machines still have branch delay slots (so they can

run code written in the late '80s)
• later implementations usually provide a nullifying alternative that

skips the instruction in the slot if static branch prediction is wrong

Copyright © 2005 Elsevier

• Unfortunately, even this start a new
instruction every cycle characterization of
RISC machines is inadequate
– In all honesty, there is no good clear definition

of what RISC means

• Most recent RISC machines (and also the
most recent x86 machines) are so-called
SUPERSCALAR implementations that can
start more than one instruction each cycle

Compiling for Modern Processors

Copyright © 2005 Elsevier

• If it's a CISC machine, the number of
instructions per second depends crucially on the
mix of instructions produced by the compiler
– the MHz number gives an upper bound (again

assuming a single set of functional units)
– if it's a "multi-issue“ (superscalar) processor like the

PowerPC G3 or Intel machines since the Pentium
Pro, the upper bound is higher than the MHz number

Compiling for Modern Processors

12

Copyright © 2005 Elsevier

• As technology improves, complexity is
beginning to creep back into RISC designs
• Right now we see "RISC" machines with

on-chip
– vector units
– memory management units
– large caches

Compiling for Modern Processors

Copyright © 2005 Elsevier

• We also see "CISC" machines (the Pentium
family) with RISC-like subsets (single-cycle
hard-coded instructions)
• In the future, we might see
– large amounts of main memory
– multiple processors
– network interfaces (now in prototypes)
– additional functions
• digital signal processing

Compiling for Modern Processors

Copyright © 2005 Elsevier

• In addition, the 80x86 instruction set will be
with us for a long time, due to the huge
installed base of IBM-compatible PCs
– After a failed attempt to introduce its own

RISC architecture (the i860), Intel has for the
last three years been working with HP on the
RISC-like Merced, or IA64, architecture, which
will remain provide a compatibility mode for
older x86 programs

Compiling for Modern Processors

13

Copyright © 2005 Elsevier

• In a sense, code for RISC machines
resembles microcode
– Complexity that used to be hidden in firmware

must now be embedded in the compiler
– Some of the worst of the complexity (e.g. branch

delay slots) can be hidden by the assembler (as it
is on MIPS machines)
• it is definitely true that it is harder to produce good

(fast) code for RISC machines than it is for CISC
machines

Compiling for Modern Processors

Copyright © 2005 Elsevier

• Example: the Pentium chip runs a little bit
faster than a 486 if you use the same old
binaries
– If you recompile with a compiler that knows to

use a RISC-like subset of the instruction set,
with appropriate instruction scheduling, the
Pentium can run much faster than a 486

Compiling for Modern Processors

Copyright © 2005 Elsevier

• Multiple functional units
– superscalar machines can issue (start) more than

one instruction per cycle, if those instructions don't
need the same functional units
– for example, there might be two instruction fetch

units, two instruction decode units, an integer unit,
a floating point adder, and a floating point
multiplier

Compiling for Modern Processors

14

Copyright © 2005 Elsevier

• Because memory is so much slower than
registers, (several hundred times slower at
present) keeping the right things in registers
is extremely important
– RISC machines often have at least two different

classes of registers (so they don't have to
support all operations on all registers) which
the compiler has to keep track of

Compiling for Modern Processors

Copyright © 2005 Elsevier

• Some (SPARC) have a complicated collection
of overlapping REGISTER WINDOWS
• Finally, good register allocation sometimes

conflicts with good instruction scheduling
– code that makes ideal use of functional units may

require more registers than code that makes poorer
use of functional units
– good compilers spend a *great* deal of effort
• make sure that the data they need most is in register

Compiling for Modern Processors

Copyright © 2005 Elsevier

• Note that instruction scheduling and register
allocation often conflict
• Limited instruction formats/more primitive

instructions
–Many operations that are provided by a single

instruction on a CISC machine take multiple
instructions on a RISC machine
– For example, some RISC machines don't provide a

32-bit multiply; you have to build it out of 4-bit
(or whatever) multiplies

Compiling for Modern Processors

15

Copyright © 2005 Elsevier

• To make all instructions the same length
– data values and parts of addresses are often scaled

and packed into odd pieces of the instruction
– loading from a 32-bit address contained in the

instruction stream takes two instructions, because
one instruction isn't big enough to hold the whole
address and the code for load
• first instruction loads part of the address into a register
• second instruction adds the rest of the address into the

register and performs the load

Compiling For Modern Machines

Copyright © 2005 Elsevier

Summary

• There are currently four (4) major RISC
architectures:
– ARM (Intel, Motorola, TI, etc)
– SPARC (Sun, TI, Fujitsu)
– Power/Power PC (IBM, Motorola. Apple)
– MIPS (SGI, NEC)

• Currently there is growing demand for 64-
bit addressing (Intel, AMD)

