
1

Copyright © 2005 Elsevier

Chapter 6:: Control Flow

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Administrative Notes

• Mid-Term Test
– Thursday, July 27 2006 at 11:30am
– No lecture before or after the mid-term test
– You are responsible for material presented in the

lectures not necessarily covered in the textbook
– Will cover chapters1-6

• Chapter 1: complete
• Chapter 2: chapter introduction and section 2.1
• Chapter 3: entire chapter except Section 3.5.1 & 3.5.2
• Chapter 5: entire chapter
• Chapter 6:

Copyright © 2005 Elsevier

Administrative Notes

• Assignment One
– Due date: Friday, July 28 2006 at 1:00pm
– Submit your assignment in the drop-box located

at the Computer Science and Engineering
undergraduate office

– Late assignments are subject to a penalty of 10%
each day

– I may choose to mark only a subset of the
assigned questions

– You must "show your work" where appropriate
to obtain full marks

Copyright © 2005 Elsevier

Administrative Details

• Drop Deadline
– Computer Science Department drop-deadline for

the course is July 31 2006
– If you wish to drop the course before this

deadline will have to petition to "drop late" as far
as the registrars office is concerned, the drop
deadline has passed (they treated the course as
D2 - see registrars office)
• Of course, the petition will have the support of

the department and of myself as well and will
be approved under these circumstances

Copyright © 2005 Elsevier

Review

• Describe the computer’s memory hierarchy
• What are registers and what are their

significance ?
• What is the problem with accessing data in

main memory ?
• What is RISC and what is CISC ?
• What are the advantages/disadvantages of

RISC and CISC ?
• What is little endian/big endian and what are

the advantages/disadvantages of each ?
Copyright © 2005 Elsevier

Review

• What is an addressing mode ?
• Describe several different addressing modes
• What is a load delay ?
• What is a branch delay ?
• What is microprogramming ?
• What can cause a pipeline to stall ?
• What is a instruction scheduling ?
• What are the dependences amongst

instructions associated with instruction
scheduling ?

2

Copyright © 2005 Elsevier

Control Flow

• Basic paradigms for control flow:
– Sequencing
– Selection
– Iteration
– Subroutines, recursion (and related control

abstractions, e.g. iterators)
– Nondeterminacy
– Concurrency

Copyright © 2005 Elsevier

Expression Evaluation

• Infix, prefix operators
• Precedence, associativity (see Figure 6.1)
– C has 15 levels - too many to remember
– Pascal has 3 levels - too few for good semantics
– Fortran has 8
– Ada has 6
• Ada puts and & or at same level

– Lesson: when unsure, use parentheses!

Copyright © 2005 Elsevier

Expression Evaluation

Copyright © 2005 Elsevier

Expression Evaluation

• Ordering of operand evaluation (generally
none)
• Application of arithmetic identities
– distinguish between commutativity, and

(assumed to be safe)
– associativity (known to be dangerous)
(a + b) + c works if a~=maxint and b~=minint and c<0
a + (b + c) does not

– inviolability of parentheses

Copyright © 2005 Elsevier

Expression Evaluation

• Short-circuiting
– Consider (a < b) && (b < c):
• If a >= b there is no point evaluating whether b <
c because (a < b) && (b < c) is
automatically false

– Other similar situations
if (b != 0 && a/b == c) ...

if (*p && p->foo) ...

if (f || messy()) ...

Copyright © 2005 Elsevier

Expression Evaluation

• Variables as values vs. variables as references
– value-oriented languages
• C, Pascal, Ada

– reference-oriented languages
• most functional languages (Lisp, Scheme, ML)
• Clu, Smalltalk

– Algol-68 kinda halfway in-between
– Java deliberately in-between
• built-in types are values
• user-defined types are objects - references

3

Copyright © 2005 Elsevier

Expression Evaluation

• Expression-oriented vs. statement-oriented
languages
– expression-oriented:
• functional languages (Lisp, Scheme, ML)
• Algol-68

– statement-oriented:
• most imperative languages

– C kinda halfway in-between (distinguishes)
• allows expression to appear instead of statement

Copyright © 2005 Elsevier

Expression Evaluation

• Orthogonality
– Features that can be used in any combination
• Meaning is consistent

if (if b != 0 then a/b == c else false) then ...

if (if f then true else messy()) then ...

• Initialization
– Pascal has no initialization facility (assign)

• Aggregates
– Compile-time constant values of user-defined

composite types

Copyright © 2005 Elsevier

Expression Evaluation

• Assignment
– statement (or expression) executed for its side

effect
– assignment operators (+=, -=, etc)
• handy
• avoid redundant work (or need for optimization)
• perform side effects exactly once

– C --, ++
• postfix form

Copyright © 2005 Elsevier

Expression Evaluation

• Side Effects
– often discussed in the context of functions
– a side effect is some permanent state change

caused by execution of function
• some noticable effect of call other than return value
• in a more general sense, assignment statements

provide the ultimate example of side effects
– they change the value of a variable

Copyright © 2005 Elsevier

Expression Evaluation

• SIDE EFFECTS ARE FUNDAMENTAL
TO THE WHOLE VON NEUMANN
MODEL OF COMPUTING

• In (pure) functional, logic, and dataflow
languages, there are no such changes
– These languages are called SINGLE-

ASSIGNMENT languages
Copyright © 2005 Elsevier

Expression Evaluation

• Several languages outlaw side effects for
functions
– easier to prove things about programs
– closer to Mathematical intuition
– easier to optimize
– (often) easier to understand

• But side effects can be nice
– consider rand()

4

Copyright © 2005 Elsevier

Expression Evaluation

• Side effects are a particular problem if they affect
state used in other parts of the expression in which a
function call appears
– It's nice not to specify an order, because it makes it easier

to optimize
– Fortran says it's OK to have side effects
• they aren't allowed to change other parts of the expression

containing the function call
• Unfortunately, compilers can't check this completely, and most

don't at all

Copyright © 2005 Elsevier

• Sequencing
– specifies a linear ordering on statements
• one statement follows another

– very imperative, Von-Neuman

Sequencing

Copyright © 2005 Elsevier

• Selection
– sequential if statements

if ... then ... else

if ... then ... elsif ... else

(cond

(C1) (E1)

(C2) (E2)

...

(Cn) (En)
(T) (Et)

)

Selection

