
1

Copyright © 2005 Elsevier

Chapter 6:: Control Flow (cont.)

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Administrative Notes

• Mid-Term Test
– Thursday, July 27 2006 at 11:30am
– No lecture before or after the mid-term test
– You are responsible for material presented in the

lectures not necessarily covered in the textbook

Copyright © 2005 Elsevier

Administrative Notes

• Mid-Term Test (cont.)
– Will cover chapters1-6

• Chapter 1: complete
• Chapter 2: chapter introduction and Section 2.1
• Chapter 3: entire chapter except Section 3.5.1, 3.5.2,

3.3.4 and 3.3.5
• Chapter 5: entire chapter
• Chapter 6: chapter introduction & Section 6.1

(complete)

2

Copyright © 2005 Elsevier

Administrative Notes

• Assignment One
– Due date: Friday, July 28 2006 at 1:00pm
– Submit your assignment in the drop-box located

at the Computer Science and Engineering
undergraduate office

– Late assignments are subject to a penalty of 10%
each day

– I may choose to mark only a subset of the
assigned questions

– You must "show your work" where appropriate
to obtain full marks

Copyright © 2005 Elsevier

Administrative Details

• Drop Deadline
– Computer Science Department drop-deadline for

the course is July 31 2006
– If you wish to drop the course before this

deadline will have to petition to "drop late" as far
as the registrars office is concerned, the drop
deadline has passed (they treated the course as
D2 - see registrars office)
• Of course, the petition will have the support of

the department and of myself as well and will
be approved under these circumstances

Copyright © 2005 Elsevier

Review

• What is an expression ?
• What is a statement ?
• What are the seven control flow paradigms ?
• What are prefix, postfix operators ?
• What are precedence rules and why are the

important ?
• What is the only way to ensure precedence

results in exactly what we “meant” ?
• In which language do all operations have the

same precedence ?

3

Copyright © 2005 Elsevier

Review

• What is short-circuiting ?
• What are the benefits of short-circuiting ?
• It is orthogonality and what are its benefits ?
• Describe the difference between expression

oriented and statement oriented languages
• What is a side-effect ?
• Do imperative languages allow side-effects ?
• Is associtivity safe ? How about

commutatitvity ?

Copyright © 2005 Elsevier

Control Flow

• Basic paradigms for control flow:
– Sequencing
– Selection
– Iteration
– Subroutines, recursion (and related control

abstractions, e.g. iterators)
– Nondeterminacy
– Concurrency

Copyright © 2005 Elsevier

• Selection
– sequential if statements

if ... then ... else

if ... then ... elsif ... else

(cond

(C1) (E1)

(C2) (E2)

...

(Cn) (En)
(T) (Et)

)

Selection

4

Copyright © 2005 Elsevier

• Selection
– Fortran computed gotos
– jump code
• for selection and logically-controlled loops
• no point in computing a Boolean value into a register, then

testing it
• instead of passing register containing Boolean out of

expression as a synthesized attribute, pass inherited
attributes INTO expression indicating where to jump to if
true, and where to jump to if false

Selection

Copyright © 2005 Elsevier

• Jump is especially useful in the presence of
short-circuiting
• Example (section 6.4.1 of book):

if ((A > B) and (C > D)) or (E <> F)
then

then_clause

else

else_clause

Selection

Copyright © 2005 Elsevier

• Code generated w/o short-circuiting (Pascal)
r1 := A -- load

r2 := B
r1 := r1 > r2
r2 := C
r3 := D
r2 := r2 > r3
r1 := r1 & r2
r2 := E
r3 := F

r2 := r2 $<>$ r3
r1 := r1 $|$ r2
if r1 = 0 goto L2

L1: then_clause -- label not actually used

goto L3

L2: else_clause
L3:

Selection

5

Copyright © 2005 Elsevier

• Code generated w/ short-circuiting (C)
r1 := A
r2 := B
if r1 <= r2 goto L4
r1 := C
r2 := D
if r1 > r2 goto L1

L4: r1 := E

r2 := F
if r1 = r2 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

Selection

Copyright © 2005 Elsevier

• Enumeration-controlled
– Pascal or Fortran-style for loops
• scope of control variable
• changes to bounds within loop
• changes to loop variable within loop
• value after the loop

Iteration

Copyright © 2005 Elsevier

Iteration

• The goto controversy
– assertion: gotos are needed almost exclusively

to cope with lack of one-and-a-half loops
– early return from procedure
– exceptions
– in many years of programming, I can't

remember using one for any other purpose
• except maybe complicated conditions that can be

separated into a single if-then-else because of the
need for short-circuiting

6

Copyright © 2005 Elsevier

Recursion

• Recursion
– equally powerful to iteration
– mechanical transformations back and forth
– often more intuitive (sometimes less)
– naïve implementation less efficient
• no special syntax required
• fundamental to functional languages like Scheme

Copyright © 2005 Elsevier

Recursion

• Tail recursion
– No computation follows recursive call

/* assume a, b > 0 */

int gcd (int a, int b) {

if (a == b) return a;

else if (a > b) return gcd (a - b, b);

else return gcd (a, b – a);

}

