
1

Copyright © 2005 Elsevier

Chapter 7:: Data Types

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Administrative Notes

• Mid-Term Test
– Thursday, July 27 2006 at 11:30am
– No lecture before or after the mid-term test
– You are responsible for material presented in the

lectures not necessarily covered in the textbook

Copyright © 2005 Elsevier

Administrative Notes

• Mid-Term Test (cont.)
– Will cover chapters1-6

• Chapter 1: complete
• Chapter 2: chapter introduction and Section 2.1
• Chapter 3: entire chapter except Section 3.5.1, 3.5.2,

3.3.4 and 3.3.5
• Chapter 5: entire chapter
• Chapter 6: chapter introduction & Section 6.1

(complete)

2

Copyright © 2005 Elsevier

Administrative Notes

• Assignment One
– Due date: Friday, July 28 2006 at 1:00pm
– Submit your assignment in the drop-box located

at the Computer Science and Engineering
undergraduate office

– Late assignments are subject to a penalty of 10%
each day

– I may choose to mark only a subset of the
assigned questions

– You must "show your work" where appropriate
to obtain full marks

Copyright © 2005 Elsevier

Administrative Details

• Drop Deadline
– Computer Science Department drop-deadline for

the course is July 31 2006
– If you wish to drop the course before this

deadline will have to petition to "drop late" as far
as the registrars office is concerned, the drop
deadline has passed (they treated the course as
D2 - see registrars office)
• Of course, the petition will have the support of

the department and of myself as well and will
be approved under these circumstances

Copyright © 2005 Elsevier

Review

• What are several different ways selection can
be achieved ?

• What is the significance of short-circuiting
with respect to selection ?

• Why are “case” constructs important e.g.,
why not simply use nested if statements ?

• What is a “jump table” ?
• Why is iteration important ?
• What are some issues we must be aware of

with respect to counted loops ?

3

Copyright © 2005 Elsevier

Review

• What is an iterator ?
• Can a counted loop always be written as a

conditional loop ?
• What is recursion ?
• What is required in order for recursion to

work ?
• What is tail recursion ?
• What is the significance of tail recursion ?

Copyright © 2005 Elsevier

Data Types

• We all have developed an intuitive notion of
what types are; what's behind the intuition?
– collection of values from a "domain" (the

denotational approach)
– internal structure of a bunch of data, described

down to the level of a small set of fundamental
types (the structural approach)
– equivalence class of objects (the implementor's

approach)
– collection of well-defined operations that can be

applied to objects of that type (the abstraction
approach)

Copyright © 2005 Elsevier

Data Types

• What are types good for?
– implicit context
– checking - make sure that certain meaningless

operations do not occur
• type checking cannot prevent all meaningless

operations
• It catches enough of them to be useful

• Polymorphism results when the compiler
finds that it doesn't need to know certain
things

4

Copyright © 2005 Elsevier

Data Types

• STRONG TYPING has become a popular
buzz-word
– like structured programming
– informally, it means that the language prevents

you from applying an operation to data on
which it is not appropriate

• STATIC TYPING means that the compiler
can do all the checking at compile time

Copyright © 2005 Elsevier

Type Systems

• Examples
–Common Lisp is strongly typed, but not

statically typed
–Ada is statically typed
–Pascal is almost statically typed
– Java is strongly typed, with a non-trivial

mix of things that can be checked
statically and things that have to be
checked dynamically

Copyright © 2005 Elsevier

Type Systems

• Common terms:
– discrete types – countable

• integer
• boolean
• char
• enumeration
• subrange

– Scalar types - one-dimensional
• discrete
• real

5

Copyright © 2005 Elsevier

Type Systems

• Composite types:
– records (unions)
– arrays

• strings

– sets
– pointers
– lists
– files

Copyright © 2005 Elsevier

Type Systems

• ORTHOGONALITY is a useful goal in the
design of a language, particularly its type
system
– A collection of features is orthogonal if there

are no restrictions on the ways in which the
features can be combined (analogy
to vectors)

Copyright © 2005 Elsevier

Type Systems

• For example
– Pascal is more orthogonal than Fortran,

(because it allows arrays of anything, for
instance), but it does not permit variant records
as arbitrary fields of other records (for instance)

• Orthogonality is nice primarily because it
makes a language easy to understand, easy
to use, and easy to reason about

6

Copyright © 2005 Elsevier

Type Checking

• A TYPE SYSTEM has rules for
– type equivalence (when are the types of two

values the same?)
– type compatibility (when can a value of type A

be used in a context that expects type B?)
– type inference (what is the type of an

expression, given the types of the operands?)

Copyright © 2005 Elsevier

Type Checking

• Type compatibility / type equivalence
– Compatibility is the more useful concept,

because it tells you what you can DO
– The terms are often (incorrectly, but we do it

too) used interchangeably.

Copyright © 2005 Elsevier

Type Checking
• Certainly format does not matter:

struct { int a, b; }
is the same as

struct {
int a, b;

}
We certainly want them to be the same as

struct {
int a;
int b;

}

7

Copyright © 2005 Elsevier

Type Checking

• Two major approaches: structural
equivalence and name equivalence
– Name equivalence is based on declarations
– Structural equivalence is based on some notion

of meaning behind those declarations
– Name equivalence is more fashionable these

days

Copyright © 2005 Elsevier

Type Checking

• There are at least two common variants on
name equivalence
– The differences between all these approaches

boils down to where you draw the line between
important and unimportant differences between
type descriptions

– In all three schemes described in the book, we
begin by putting every type description in a
standard form that takes care of "obviously
unimportant" distinctions like those above

Copyright © 2005 Elsevier

Type Checking

• Structural equivalence depends on simple
comparison of type descriptions substitute
out all names
– expand all the way to built-in types

• Original types are equivalent if the
expanded type descriptions are the same

