
1

Copyright © 2005 Elsevier

Chapter 7:: Data Types (cont.)

Programming Language Pragmatics
Michael L. Scott

Copyright © 2005 Elsevier

Administrative Notes

• Final Test
– Thursday, August 3 2006 at 11:30am
– No lecture before or after the mid-term test
– You are responsible for material presented in the

lectures not necessarily covered in the textbook
– Similar format (time) to the mid-term test

Copyright © 2005 Elsevier

Administrative Notes

• Assignment Two
– Due date: Friday, August 4 2006 at 1:00pm
– Submit your assignment in the drop-box located

at the Computer Science and Engineering
undergraduate office

– Late assignments are subject to a penalty of 10%
each day

– I may choose to mark only a subset of the
assigned questions

– You must "show your work" where appropriate
to obtain full marks

Copyright © 2005 Elsevier

Administrative Details

• Drop Deadline
– Computer Science Department drop-deadline for

the course is July 31 2006
– If you wish to drop the course before this

deadline will have to petition to "drop late" as far
as the registrars office is concerned, the drop
deadline has passed (they treated the course as
D2 - see registrars office)
• Of course, the petition will have the support of

the department and of myself as well and will
be approved under these circumstances

Copyright © 2005 Elsevier

Review

• What is a data type ?
• What is the purpose of a data types e.g., what

are they good for ?
• What is strong typing ?
• What is static typing ?
• What is orthogonality ?
• What is a type system ?
• What is type compatibility ?
• What is type equivalence ?

Copyright © 2005 Elsevier

Review

• What is structural equivalence ?
• What is name equivalence ?
• Which of the two above equivalences is more

“fashionable” currently ?
• What are the two main variants of name

equivalence ?

2

Copyright © 2005 Elsevier

Type Checking

• Two major approaches: structural
equivalence and name equivalence
– Name equivalence is based on declarations
– Structural equivalence is based on some notion

of meaning behind those declarations
– Name equivalence is more fashionable these

days

Copyright © 2005 Elsevier

Type Checking

• There are at least two common variants on
name equivalence
– The differences between all these approaches

boils down to where you draw the line between
important and unimportant differences between
type descriptions

– In all three schemes described in the book, we
begin by putting every type description in a
standard form that takes care of "obviously
unimportant" distinctions like those above

Copyright © 2005 Elsevier

Type Checking

• Structural equivalence depends on simple
comparison of type descriptions substitute
out all names
– expand all the way to built-in types

• Original types are equivalent if the
expanded type descriptions are the same

Copyright © 2005 Elsevier

Type Checking

• Coercion
–When an expression of one type is used in a

context where a different type is expected, one
normally gets a type error
– But what about

var a : integer; b, c : real;
...

c := a + b;

Copyright © 2005 Elsevier

Type Checking

• Coercion
–Many languages allow things like this, and

COERCE an expression to be of the proper
type
– Coercion can be based just on types of

operands, or can take into account expected
type from surrounding context as well
– Fortran has lots of coercion, all based on

operand type

Copyright © 2005 Elsevier

Type Checking

• C has lots of coercion, too, but with simpler
rules:
– all floats in expressions become doubles
– short int and char become int in

expressions
– if necessary, precision is removed when

assigning into LHS

3

Copyright © 2005 Elsevier

Type Checking

• In effect, coercion rules are a relaxation of
type checking
– Recent thought is that this is probably a bad

idea
– Languages such as Modula-2 and Ada do not

permit coercions
– C++, however, goes hog-wild with them
– They're one of the hardest parts of the language

to understand
Copyright © 2005 Elsevier

Type Checking

• Make sure you understand the difference
between
– type conversions (explicit)
– type coercions (implicit)
– sometimes the word 'cast' is used for

conversions (C is guilty here)

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Records
– usually laid out contiguously
– possible holes for alignment reasons
– smart compilers may re-arrange fields to minimize

holes (C compilers promise not to)
– implementation problems are caused by records

containing dynamic arrays
• we won't be going into that in any detail

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Unions (variant records)
– overlay space
– cause problems for type checking

• Lack of tag means you don't know what is
there

• Ability to change tag and then access fields
hardly better
– can make fields "uninitialized" when tag is

changed (requires extensive run-time support)
– can require assignment of entire variant, as in Ada

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Memory layout and its impact (structures)

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Memory layout and its impact (structures)

4

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Memory layout and its impact (structures)

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Memory layout and its impact (unions)

Copyright © 2005 Elsevier

Records (Structures) and
Variants (Unions)

• Memory layout and its impact (unions)

Copyright © 2005 Elsevier

Arrays

• Arrays are the most common and important
composite data types

• Unlike records, which group related fields of
disparate types, arrays are usually homogeneous

• Semantically, they can be thought of as a
mapping from an index type to a component or
element type

• A slice or section is a rectangular portion of an
array (See figure 7.6)

Copyright © 2005 Elsevier

Arrays

Copyright © 2005 Elsevier

• Dimensions, Bounds, and Allocation
– global lifetime, static shape — If the shape of an array is

known at compile time, and if the array can exist
throughout the execution of the program, then the compiler
can allocate space for the array in static global memory

– local lifetime, static shape — If the shape of the array is
known at compile time, but the array should not exist
throughout the execution of the program, then space can be
allocated in the subroutine’s stack frame at run time.

– local lifetime, shape bound at elaboration time

Arrays

5

Copyright © 2005 Elsevier

Arrays

Copyright © 2005 Elsevier

Arrays

• Contiguous elements (see Figure 7.9)
– column major - only in Fortran
– row major
• used by everybody else
• makes array [a..b, c..d] the same as array [a..b] of array

[c..d]

Copyright © 2005 Elsevier

Arrays

Copyright © 2005 Elsevier

Arrays

• Two layout strategies for arrays (Figure 7.10):
– Contiguous elements
– Row pointers

• Row pointers
– an option in C
– allows rows to be put anywhere - nice for big arrays on

machines with segmentation problems
– avoids multiplication
– nice for matrices whose rows are of different lengths
• e.g. an array of strings

– requires extra space for the pointers

Copyright © 2005 Elsevier

Arrays

Copyright © 2005 Elsevier

Arrays

• Example: Suppose
A : array [L1..U1] of array [L2..U2]
of array [L3..U3] of elem;
D1 = U1-L1+1
D2 = U2-L2+1
D3 = U3-L3+1

Let
S3 = size of elem
S2 = D3 * S3
S1 = D2 * S2

6

Copyright © 2005 Elsevier

Arrays

Copyright © 2005 Elsevier

Arrays

• Example (continued)
We could compute all that at run time, but we can make
do with fewer subtractions:

== (i * S1) + (j * S2) + (k * S3)
+ address of A

- [(L1 * S1) + (L2 * S2) + (L3 * S3)]
The stuff in square brackets is compile-time constant
that depends only on the type of A

Copyright © 2005 Elsevier

Strings

• Strings are really just arrays of characters
• They are often special-cased, to give them

flexibility (like polymorphism
or dynamic sizing) that is not available for
arrays in general
– It's easier to provide these things for strings

than for arrays in general because strings are
one-dimensional and (more important) non-
circular

Copyright © 2005 Elsevier

Sets

• We learned about a lot of possible
implementations
– Bitsets are what usually get built into

programming languages
– Things like intersection, union, membership, etc.

can be implemented efficiently with bitwise
logical instructions
– Some languages place limits on the sizes of sets to

make it easier for the implementor
• There is really no excuse for this

Copyright © 2005 Elsevier

Pointers And Recursive Types

• Pointers serve two purposes:
– efficient (and sometimes intuitive) access to

elaborated objects (as in C)
– dynamic creation of linked data structures, in

conjunction with a heap storage manager
• Several languages (e.g. Pascal) restrict

pointers to accessing things in the heap
• Pointers are used with a value model of

variables
– They aren't needed with a reference model

Copyright © 2005 Elsevier

Pointers And Recursive Types

7

Copyright © 2005 Elsevier

Pointers And Recursive Types

Copyright © 2005 Elsevier

Pointers And Recursive Types

• C pointers and arrays
int *a == int a[]
int **a == int *a[]

• BUT equivalences don't always hold
– Specifically, a declaration allocates an array if it

specifies a size for the first dimension
– otherwise it allocates a pointer
int **a, int *a[] pointer to pointer to int
int *a[n], n-element array of row pointers
int a[n][m], 2-d array

Copyright © 2005 Elsevier

Pointers And Recursive Types

• Compiler has to be able to tell the size of the
things to which you point
– So the following aren't valid:

int a[][] bad
int (*a)[] bad

– C declaration rule: read right as far as you can
(subject to parentheses), then left, then out a level
and repeat

int *a[n], n-element array of pointers to
integer

int (*a)[n], pointer to n-element array
of integers Copyright © 2005 Elsevier

Pointers And Recursive Types

• Problems with dangling pointers are due to
– explicit deallocation of heap objects
• only in languages that have explicit deallocation

– implicit deallocation of elaborated objects
• Two implementation mechanisms to catch

dangling pointers
– Tombstones
– Locks and Keys

Copyright © 2005 Elsevier

Pointers And Recursive Types

Copyright © 2005 Elsevier

Pointers And Recursive Types

8

Copyright © 2005 Elsevier

Pointers And Recursive Types

• Problems with garbage collection
– many languages leave it up to the programmer to

design without garbage creation - this is VERY
hard
– others arrange for automatic garbage collection
– reference counting

• does not work for circular structures
• works great for strings
• should also work to collect unneeded tombstones

Copyright © 2005 Elsevier

Pointers And Recursive Types

• Garbage collection with reference counts

Copyright © 2005 Elsevier

Pointers And Recursive Types
• Mark-and-sweep

– commonplace in Lisp dialects
– complicated in languages with rich type structure,

but possible if language is strongly typed
– achieved successfully in Cedar, Ada, Java, Modula-

3, ML
– complete solution impossible in languages that are

not strongly typed
– conservative approximation possible in almost any

language (Xerox Portable Common Runtime
approach)

Copyright © 2005 Elsevier

Pointers And Recursive Types

• Garbage
collection
with pointer
reversal

Copyright © 2005 Elsevier

Lists

• A list is defined recursively as either the
empty list or a pair consisting of an object
(which may be either a list or an atom) and
another (shorter) list
– Lists are ideally suited to programming in

functional and logic languages
• In Lisp, in fact, a program is a list, and can extend

itself at run time by constructing a list and executing it
– Lists can also be used in imperative programs

Copyright © 2005 Elsevier

Files and Input/Output
• Input/output (I/O) facilities allow a program to

communicate with the outside world
– interactive I/O and I/O with files

• Interactive I/O generally implies communication
with human users or physical devices

• Files generally refer to off-line storage
implemented by the operating system

• Files may be further categorized into
– temporary
– persistent

