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Before We Begin 

Administrative Details (1):
Lab Six Today

No assignment 

Lab report required 

This lab may take two weeks 
We will see how it goes

Requires the use of Matlab
No camera required

Ideally, you will read and look over the lab before 
coming to the lab!

Administrative Details (2):
Mid-Term Exam

Exams will be given back during the lab period

We will go over the exam solutions at a latter time 
definitely before the final exam!
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Some Questions to Consider (1):
What is an edge ?

How do edges arise ?(three ways) 

What is a digital derivative ?

What is the gradient operator ?

What is a first-order derivative ?

What is a second-order derivative ?

What is a Sobel operator ?

How do we apply the Sobel operator ?

Second Order Derivatives 
The Laplacian Operator

Introduction (1):
2D, Second Order Derivative Operator 

Basic approach
Define some discrete formulation for the second 
derivative 
Using this formulation, define a filter mask 
(template etc.) 

Isotropic filters → rotation invariant filters 
Filter response independent of the direction of 
discontinuity 
Rotating image and applying filter yields same 
results!
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Introduction (2):
Simplest Isotropic Derivative Operator is 

the Laplacian, Defined for Image f(x,y) as
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Laplacian is a linear operator
Derivatives of any order are linear operators

Above expression is of course formulated in a 
continuous form

Must “convert” to discrete form if it is to be of 
any use for image processing

Defining the Discrete Laplacian (1):
Several Ways to Define a Discrete Laplacian 

Using Neighborhoods
Must however satisfy the second order derivative 
properties previously described 

Recall second order derivative previously given
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We will basically “expand” on this formulation to 
account for both spatial variables x,y

Defining the Discrete Laplacian (2):
Defining a Discrete Laplacian (cont…)

Partial second order (discrete) derivative in the 
“x” direction defined as
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Partial second order (discrete) derivative in the “y”
direction defined as
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Defining the Discrete Laplacian (3):
Defining a Discrete Laplacian (cont…)

By summing the x,y components, we obtain the 
digital implementation of the 2D Laplacian

Can be implemented using the 
following mask (kernel)

Isotropic results for rotations 
in multiples of 90o only!

In other words, diagonal 
directions ignored!
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Defining the Discrete Laplacian (4):
Defining a Discrete Laplacian (cont…)

Diagonal directions can however be incorporated 
by adding two more terms, one for each of the two 
diagonal directions

Can be implemented using the 
following mask (kernel)

Isotropic results for rotations 
in multiples of 45o only!

Defining the Discrete Laplacian (5):
Defining a Discrete Laplacian (cont…)

A “negative version” of the Laplacian definition is 
also available in which the coefficients of the mask 
are negative of the ones given

Yields the same results
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Defining the Discrete Laplacian (6):
Laplacian in Practice

Since it is a derivative operator, it highlights gray 
level discontinuities and deemphasizes regions with 
slow varying gray levels

Produces images that have grayish edge lines and 
other discontinuities on featureless background

Typically, add (or subtract if negative version of 
mask used) the Laplacian output image to the 
original input image

Recover the background
Preserve sharpening effect of the Laplacian

Defining the Discrete Laplacian (7):
Graphical Illustration of the Laplacian

Original image –
north pole of 

moon

Applying the 
Laplacian filter 
– contains both 

positive and 
negative values!

Scaled by taking 
absolute value of 
previous image 

to eliminate 
negative values –

not really 
“correct”!

Laplacian and 
original image 

added together

Defining the Discrete Laplacian (8):
Laplacian in Practice – Simplifications

Can incorporate the two steps of performing the 
Laplacian and adding results to the original image 
using a single mask

Diagonal 
directions ignored

Diagonal directions 
emphasized
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Combining Spatial   
Enhancement Features

Introduction (1):
Frequently, Many Enhancement Approaches 

are Combined to Produce Desired Result
Best way to illustrate this is by an example →
consider a bone scan used to detect diseases such 
as bone infections and tumors

Goal → enhance original image by sharpening it 
to bring out more skeletal detail
But original image gray level dynamic range is low 
and contains high noise 

Introduction (2):
Multiple Enhancement Techniques Example

A. 
Original 
image

B. Laplacian 
applied to 

original image –
notice the 

skeletal outline

C. Sharpened 
version obtained 

by summing 
original with 

Laplacian

D. Sobel 
applied to 

original image
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Introduction (3):
Multiple Enhancement Techniques Example

E. Sobel 
image 

processed 
with a 5x5 
averaging 

filter

F. Mask image 
formed by 

product of image 
C and E

G. Sharpened 
version obtained by 

summing A and F H. Power law 
transformation 
applied to image 

G to increase 
contrast

Introduction (4):
Multiple Enhancement Techniques

Keep in mind that performing these multiple 
operations can become computationally very 
expensive!

Typically not done in real-time!
In many cases, real-time not required → medical 
imaging etc. do not necessarily need to be real-
time. Can be processed afterwards and results 
can typically be made available after a day or 
more

The Fourier Transform
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Background (1):
Fourier Domain Processing is Fundamental to 

Image Processing
To fully understand image processing at the very 
least, a basic understanding of  Fourier processing 
is needed!

Perform a Fourier transform on (spatial domain)  
image to obtain its spectral components
Perform some operation on this spectral 
representation
Perform inverse Fourier operation to get back 
the spatial representation

Background (2):
Introduced by the French mathematician 

Jean Baptiste Fourier in 1807
Published his theory in a book titled “The Theory of 
Heat” (1822)

Fourier’s theory (Fourier series) → any function 
that periodically repeats itself (infinitely) can be 
expressed as a sum of sines and/or cosines of 
different frequencies, each multiplied by different 
coefficient

Doesn’t matter how complicated the function is, 
as long as it repeats itself!

Background (3):
Graphical Illustration

=

+

+

+
“Complex” waveform

Sum of sinusoids
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Background (4):
Can Even Represent Non-Periodic, Finite 

Functions as the Integral of Sines and/or 

Cosine Functions
Provided area under resulting curve of the function 
is finite

This formulation is known as a Fourier transform as 
opposed to  a Fourier series 

Even more useful when considering practical 
problems → many times functions (signals) in “real-
life” are not periodic and are finite

Background (5):
Important Characteristics of Both Fourier 

Transform and Fourier Series
Can completely recover (reconstruct) the original 
(spatial representation) function with NO loss of 
information

Can work in the Fourier Domain and then return 
back to spatial domain → many problems are 
easier solved in the Fourier domain 

Background (6):
The Functions (Images) we are Dealing with 

Are Finite in Duration
We are therefore primarily interested and will be 
dealing with, is the Fourier transform 

Many Image Enhancement Techniques in the 

Fourier Domain
Extremely useful

Can be easier to understand what exactly is 
happening and how the operations work
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The One-Dimensional
Fourier Transform

Introduction (1):
Originally, Fourier Transform was 
Formulated with Continuous Time Signals

We are dealing with sampled images
Finite intensity values and finite in duration 
In other words, we are dealing with a discrete 
signal → remember, an image itself is a signal as in 
your DSP course, except we are now dealing with a 
two-dimensional signal as opposed to a one-
dimensional signal you are familiar with
Discrete Fourier Transform (DFT) introduced to 
handle discrete signals

Discrete Fourier Transform (1):
One of the Most Common and Powerful 

Procedures Encountered in the Field of 

Digital Signal Processing in General
Enables us to analyze, manipulate and synthesize 
signals in ways not possible with continuous (analog) 
signal processing

Used in every field of engineering

A solid understanding of the DFT is extremely 
important!
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Discrete Fourier Transform (2):
What is the Discrete Fourier Transform ?

A mathematical procedure used to determine the 
frequency (or harmonic) content of a discrete signal

Remember → discrete signal obtained by 
periodically sampling a continuous time signal in 
the time domain

Based on the Continuous Fourier Transform (CFT), 
denoted by X(f) (or F(u) )

∫
∞

∞−

−= dtetxfX ftj π2)()(

Discrete Fourier Transform (3):

Lets Analyze This Expression:
f → frequency (spectral component)
x(t) → continuous time domain signal
e-j2πft → a sinusoid (sine wave) of frequency f
In words → Fourier Transform of frequency 
component f is a correlation of the infinite input 
signal at each time step with a sine wave of 
frequency f → X(f) tells us “how much” of the sine 
wave of frequency f the signal contains
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Discrete Fourier Transform (4):
Discrete Fourier Transform (DFT) 
Mathematically
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Using Euler’s Relationship e-jθ = cos(θ) – jsin(θ) we 
obtain:
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Discrete Fourier Transform (5):

X[m] → mth DFT output e.g., X[0], X[1] … X[M-1]

m → index of the DFT output in frequency domain 
(m = 0, 1, 2, … M-1)

x[n] → sequence of input (discrete) samples     
(x[0], x[1], x[2] … X[n-1])

n → (discrete) time domain index of input samples 

j = sqrt(-1) (remember, complex numbers!)

N → number of samples (same for input and DFT)
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Discrete Fourier Transform (6):
Some Notes Regarding the DFT

Indices for input samples and DFT output samples 
always go from 0 to N-1

With N input time domain samples, the DFT 
determines the spectral content of the input at 
N equally spaced frequency points
N is an important parameter and determines

1. How many input samples are needed
2. Resolution of the frequency domain results
3. Amount of processing time required to 

calculate an N-point DFT

Discrete Fourier Transform (7):
Some Notes Regarding the DFT (cont…)

In words:
Each X[m] DFT output is the sum of a point for 
point product between an input sequence of 
input values and a complex sinusoid of the form 
cos(θ) – jsin(θ) 
Exact frequencies of the of the different 
sinusoids depend on sample rate fs and number 
of samples N 
Fundamental frequency of the sinusoids is fs /N 
and all other X[m] analysis frequencies are 
integer multiples of the fundamental!
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Discrete Fourier Transform (8):
Some Notes Regarding the DFT (cont…)

The N separate DFT analysis frequencies are

N
mfmf s

analysis =)(

So,  X[0] gives us magnitude of an 0Hz  (“DC”) 
component contained in the signal, X[1] gives us 
magnitude of the fundamental component, X[2] 
gives us magnitude of 2 x fundamental component 
contained in signal etc.

Finally, keep in mind, we are dealing with complex 
sinusoids → magnitude and phase!

Discrete Fourier Transform (9):
Determining the Magnitude and Phase 

Contained in each X[m] Term
We can represent an arbitrary DFT output value 
X[m] by its real and imaginary parts

][][][][ mXmjXmXmX magimagreal =+= at angle of Xθ[m]

The magnitude of X[m] is
22 ][][][][ mXmXmXmX imagrealmag +==

Discrete Fourier Transform (10):
Determining the Magnitude and Phase 

Contained in each X[m] Term (cont…)
The phase angle of X[m], Xθ[m] is









= −

Θ ][
][

tan][ 1

mX
mX

mX
real

imag

The power of X[m], known as the power spectrum or 
spectral power is the magnitude squared

222 ][][][][ mXmXmXmX imagrealmagPS +==
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Discrete Fourier Transform (11):
Graphical Illustration of Phase and 

Magnitude (Complex Plane)

Real axis

Imaginary 
axis (j)

Xreal[m]

Ximag[m]

This point represents the 
complex number 

X[m] = Xreal[m] + Ximag[m]

θ

Xmag[m]

Some Properties of the
1D DFT  

DFT Symmetry (1):
Symmetry in DFT Output is Obvious!

Standard DFT is designed to accept complex input 
but most physical DFT inputs are “real” inputs 

Non-zero real sample values
Imaginary values are assumed to be zero

With “real” input x[n] the complex DFT outputs for 
n = 1 to n = (N/2) – 1 are redundant with frequency 
output values for m > (N/2)

mth DFT output will have the same value as the 
(N-m)th DFT output
the phase angle of the mth output is the 
negative of the (N-m)th DFT output
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DFT Symmetry (2):
Symmetry in DFT Output is Obvious! (cont…)

What does this symmetry mean?
If we perform an N-point DFT on a real input 
sequence, we get N separate complex DFT 
output terms but only the first N/2 terms are 
independent 
To obtain DFT of x[n], we need only compute the 
first N/2 values of X[m] where 0 ≤ m ≤ (N/2)-1
The X[N/2] to X[N-1] DFT output terms provide 
no additional information about the spectrum of 
the real sequence x[n]

DFT Linearity (3):
DFT is Linear

The DFT of the sum of two signals is equal to the 
sum of the transforms of each signal

Let x1[n] and x2[n] be two discrete input signals 
with DFT X1[m] and X2[n] respectively 
Consider the sum of these two signals

xsum[n] = x1[n] + x2[n]

The DFT of xsum[n] is 

Xsum[m] = X1[m] + X2[n]

DFT Linearity (4):
DFT is Linear (cont…)

Exercise: 
Mathematically prove this linearity property for 
the DFT
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Inverse DFT  

Inverse DFT – IDFT (1):
Reverse the DFT Process

DFT transforms time-domain data into frequency 
domain representation

With inverse DFT, we transform frequency domain 
representation into time-domain representation

Perform IDFT on X[m] frequency domain values
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