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Introduction to Digital Image Processing

Administrative Details (1):

@ Lab Six Today
2 No assignment
e Lab report required
o This lab may take two weeks
+ We will see how it goes
@ Requires the use of Matlab
* No camera required

o Ideally, you will read and look over the lab before
coming to the lab!

Administrative Details (2):

@ Mid-Term Exam
o Exams will be given back during the lab period

= We will go over the exam solutions at a latter time
definitely before the final exam!

Some Questions to Consider (1):

@ What is an edge ?

o How do edges arise ?(three ways)

o What is a digital derivative ?

o What is the gradient operator ?

o What is a first-order derivative ?

o What is a second-order derivative ?
o What is a Sobel operator ?

o How do we apply the Sobel operator ?

Second Order Derivatives
The Laplacian Operator
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Introduction (1):

e 2D, Second Order Derivative Operator

e Basic approach

« Define some discrete formulation for the second
derivative

« Using this formulation, define a filter mask
(template etc.)

o TIsotropic filters — rotation invariant filters

« Filter response independent of the direction of
discontinuity

« Rotating image and applying filter yields same
results!

Introduction (2):

e Simplest Isotropic Derivative Operator is

the Laplacian, Defined for Image f(x,y) as

2o _ 0S 0/
V f - 7t 2
ox Oy
s Laplacian is a linear operator
« Derivatives of any order are linear operators
s Above expression is of course formulated ina
continuous form

+ Must "convert” to discrete form if it is to be of
any use for image processing

Defining the Discrete Laplacian (1):
@ Several Ways to Define a Discrete Laplacian

Using Neighborhoods

o Must however satisfy the second order derivative
properties previously described

o Recall second order derivative previously given

87{ = fO+D+f(x-D)-2/(x)
ox

o We will basically "expand” on this formulation to
account for both spatial variables x,y

Defining the Discrete Laplacian (2):

a Defining a Discrete Laplacian (cont...)
o Partial second order (discrete) derivative in the

"x" direction defined as

a{ = fx+Ly+f(x-Ly)-2/(x,y)
Ox

o Partial second order (discrete) derivative in the "y
direction defined as

2
afg = fluy+D+fxny-D-2f(x,y)
oy
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Defining the Discrete Laplacian (3):

o Defining a Discrete Laplacian (cont...)

e By summing the x,y components, we obtain the
digital implementation of the 2D Laplacian

V= e+l +f—Ly)+fy+)+f (o y-D1-4£(x)

»

Can be implemented using the 0 1 0
following mask (kernel)

o TIsotropic results for rotations ! - !
in multiples of 90° only!

« Inother words, diogoyv

directions ignhored!

Defining the Discrete Laplacian (4):

@ Defining a Discrete Laplacian (cont...)

o Diagonal directions can however be incorporated
by adding two more terms, one for each of the two
diagonal directions

e Can be implemented using the 1 1 1
following mask (kernel)

e TIsotropic results for rotations
in multiples of 45° only!

Defining the Discrete Laplacian (5):

a Defining a Discrete Laplacian (cont...)

o A "negative version” of the Laplacian definition is
also available in which the coefficients of the mask
are negative of the ones given

« Yields the same results

—; 4 - -1 8 =1

Defining the Discrete Laplacian (6):

@ Laplacian in Practice

s Since it is a derivative operator, it highlights gray
level discontinuities and deemphasizes regions with
slow varying gray levels
+ Produces images that have grayish edge lines and

other discontinuities on featureless background

s Typically, add (or subtract if negative version of
mask used) the Laplacian output image to the
original input image
+ Recover the background
+ Preserve sharpening effect of the Laplacian
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Defining the Discrete Laplacian (7):

@ Graphical Illustration of the Laplacian

Original image - Applying the
north pole of Laplacian filter
moon % - contains both

Lol positive and
> negative values!

Scaled by taking
absolute value of
previous image
to eliminate
negative values -
not really
“correct”!

Laplacian and
original image
added together

Defining the Discrete Laplacian (8):

@ Laplacian in Practice - Simplifications

e Can incorporate the two steps of performing the
Laplacian and adding results to the original image
using a single mask

0o | -1 ] 0 R
-1 5 ! -1 9 -1
0 | -1 ] 0 -1 | -1 | =
Diagonal Diagonal directions
directions ignored emphasized

Combining Spatial
Enhancement Features

Introduction (1):

@ Frequently, Many Enhancement Approaches
are Combined to Produce Desired Result
o Best way to illustrate this is by an example —
consider a bone scan used to detect diseases such
as bone infections and tumors
+ Goal - enhance original image by sharpening it
to bring out more skeletal detail
- But original image gray level dynamic range is low
and contains high noise
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Introduction (2):
@ Multiple Enhancement Techniques Example

A. B. Laplacian
Original applied to
image original image -
notice the

skeletal outline

C. Sharpened
version obtained
by summing
original with

Laplacian

original image

Introduction (3):

@ Multiple Enhancement Techniques Example

E. Sobel F. Mask image
image formed by
processed product of image
with a 5x5 Cand E

averaging
filter

6. Sharpened
version obtained by
summing A and F

—p

H. Power law
transformation
applied to image

G to increase

contrast

Introduction (4):
@ Multiple Enhancement Techniques

s Keep in mind that performing these multiple
operations can become computationally very
expensive!

+ Typically not done in real-timel!

« Inmany cases, real-time not required — medical
imaging etc. do not necessarily need to be real-
time. Can be processed afterwards and results

can typically be made available after a day or
more

The Fourier Transform
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Background (1):

Image Processing

is needed!
image to obtain its spectral components
< Perform some operation on this spectral

representation

the spatial representation

@ Fourier Domain Processing is Fundamental to

s To fully understand image processing at the very
least, a basic understanding of Fourier processing

+ Perform a Fourier transform on (spatial domain)

+ Perform inverse Fourier operation to get back

Background (2):

Introduced by the French mathematician
Jean Baptiste Fourier in 1807

@ Published his theory in a book titled "The Theory of
Heat" (1822)

< Fourier's theory (Fourier series) — any function
that periodically repeats itself (infinitely) can be
expressed as a sum of sines and/or cosines of
different frequencies, each multiplied by different
coefficient
« Doesn't matter how complicated the function is,
as long as it repeats itself!

Background (3):

@ Graphical Illustration
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“Complex" waveform / /

Sum of sinusoids

Background (4):

Can Even Represent Non-Periodic, Finite
Functions as the Integral of Sines and/or

Cosine Functions

o Provided area under resulting curve of the function
is finite

e This formulation is known as a Fourier transform as
opposed to a Fourier series

o Even more useful when considering practical
problems — many times functions (signals) in “real-
life" are not periodic and are finite
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Background (5):

@ Important Characteristics of Both Fourier

Transform and Fourier Series

s Can completely recover (reconstruct) the original
(spatial representation) function with NO loss of
information
+ Can work in the Fourier Domain and then return

back to spatial domain — many problems are
easier solved in the Fourier domain

Background (6):

@ The Functions (Images) we are Dealing with

Are Finite in Duration
s We are therefore primarily interested and will be
dealing with, is the Fourier transform

@  Many Image Enhancement Techniques in the

Fourier Domain
s Extremely useful

s Can be easier to understand what exactly is
happening and how the operations work

The One-Dimensional
Fourier Transform

Introduction (1):
@ Originally, Fourier Transform was

Formulated with Continuous Time Signals

o We are dealing with sampled images

o Finite intensity values and finite in duration

o Inother words, we are dealing with a discrete
signal - remember, an image itself is a signal as in
your DSP course, except we are now dealing with a

two-dimensional signal as opposed to a one-
dimensional signal you are familiar with

o Discrete Fourier Transform (DFT) introduced to
handle discrete signals
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Discrete Fourier Transform (1):
@ One of the Most Common and Powerful
Procedures Encountered in the Field of

Digital Signal Processing in General

s Enables us to analyze, manipulate and synthesize
signals in ways not possible with continuous (analog)
signal processing

s Used in every field of engineering

s A solid understanding of the DFT is extremely
important!

Discrete Fourier Transform (2):

@ What is the Discrete Fourier Transform ?
e A mathematical procedure used to determine the
frequency (or harmonic) content of a discrete signal
Remember — discrete signal obtained by
periodically sampling a continuous time signal in
the time domain
o Based on the Continuous Fourier Transform (CFT),
denoted by X(f) (or F(u) )

©

Xq)zjﬂmﬂWt

—0

Discrete Fourier Transform (3):

X(f) = pmwwm
a Lets Analyze This Expression:
o f— frequency (spectral component)
o x(t) —> continuous time domain signal
s ed2nft 5 a sinusoid (sine wave) of frequency f

e Inwords — Fourier Transform of frequency
component f is a correlation of the infinite input
signal at each time step with a sine wave of
frequency f — X(f) tells us “how much” of the sine
wave of frequency f the signal contains

Discrete Fourier Transform (4):
@ Discrete Fourier Transform (DFT)
Mathematically

M-1

1 -
X(m] = ﬁzx[n]e’*”’"”'v
n=0

s Using Euler's Relationship e = cos(B) - jsin(B) we
obtain:
M-1

X[m] = ﬁ Zx[n](cos(szm / N)— jsin(2zmm/ N))
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Discrete Fourier Transform (5):

X[m] = Mix[n](cos(Znnm/N)—jsin(27znm/N))

n=0

o X[m]— mth DFT output e.g., X[0], X[1] ... X[M-1]

[+

m — index of the DFT output in frequency domain
(m=0,1,2, .. M-1)

o x[n] - sequence of input (discrete) samples
(x[01], x[1], x[2] ... X[n-1])

s n — (discrete) time domain index of input samples

[

Jj = sqri(-1) (remember, complex numbers!)

o N — number of samples (same for input and DFT)

Discrete Fourier Transform (6):

@ Some Notes Regarding the DFT
o Indices for input samples and DFT output samples
always go from O to N-1

= With N input time domain samples, the DFT
determines the spectral content of the input at
N equally spaced frequency points

« N is an important parameter and determines

1. How many input samples are needed
2. Resolution of the frequency domain results

3. Amount of processing time required to
calculate an N-point DFT

Discrete Fourier Transform (7):
a Some Notes Regarding the DFT (cont...)

o Inwords:

« Each X[m] DFT output is the sum of a point for
point product between an input sequence of
input values and a complex sinusoid of the form
cos(8) - jsin(6)

+ Exact frequencies of the of the different
sinusoids depend on sample rate f, and number
of samples N

+ Fundamental frequency of the sinusoids is f, /N
and all other X[m] analysis frequencies are
integer multiples of the fundamental!

Discrete Fourier Transform (8):
a Some Notes Regarding the DFT (cont...)

o The N separate DFT analysis frequencies are

. mf,
Sanapsis (M) = 7

e  So, X[0] gives us maghitude of an OHz ("DC")
component contained in the signal, X[1] gives us
magnitude of the fundamental component, X[2]
gives us magnitude of 2 x fundamental component
contained in signal etc.

o Finally, keep in mind, we are dealing with complex
sinusoids — magnitude and phasel!
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Discrete Fourier Transform (9):
@ Determining the Magnitude and Phase
Contained in each X[m] Term
@ We can represent an arbitrary DFT output value

X[m] by its real and imaginary parts

X[m]= X, [m]+jX,

imag

[m]=X

.agm] at angle of X,[m]
e The magnitude of X[m] is

X e lm] = |X[m]] =

Xyl mT + X, [m]

Discrete Fourier Transform (10):
@ Determining the Magnitude and Phase
Contained in each X[m] Term (cont...)
@ The phase angle of X[m], Xg[m] is

Xl.mg[m]j

Xolm]=tan~ ( X [m]

o The power of X[m], known as the power spectrum or
spectral power is the magnitude squared

XPS[m] = )(mag[rn]2 = Xrea][m]2 + Ximag[m]2

Discrete Fourier Transform (11):
@ Graphical Illustration of Phase and
Magnitude (Complex Plane)

This point represents the

Imaginary complex number
axis (j) X[mM] = Xealm] + Xingg[m]
Xine0] ~
Xmaglm]
[S)

XreallM] Real axis

Some Properties of the
1D DFT
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DFT Symmetry (1):

o Symmetry in DFT Output is Obvious!
o Standard DFT is designed to accept complex input
but most physical DFT inputs are “real” inputs
+ Non-zero real sample values
« Imaginary values are assumed to be zero
o With "real” input x[n] the complex DFT outputs for
n=1ton=(N/2)-1are redundant with frequency
output values for m > (N/2)
+ mth DFT output will have the same value as the
(N-m)th DFT output
+ the phase angle of the mth output is the
negative of the (N-m)th DFT output

DFT Symmetry (2):

@ Symmetry in DFT Output is Obvious! (cont..)
o What does this symmetry mean?

= If we perform an N-point DFT on a real input
sequence, we get N separate complex DFT
output terms but only the first N/2 terms are
independent

+  To obtain DFT of x[n], we need only compute the
first N/2 values of X[m] where 0 < m ¢ (N/2)-1

= The X[N/2] to X[N-1] DFT output terms provide
no additional information about the spectrum of
the real sequence x[n]

DFT Linearity (3):

a DFT is Linear

o The DFT of the sum of two signals is equal to the
sum of the transforms of each signal

+ Let x;[n] and x,[n] be two discrete input signals
with DFT X;[m] and X,[n] respectively

« Consider the sum of these two signals

xsum[n] = xl[n] * Xz["]
+ The DFT of x,,[nlis

Xsum[m] = Xl[m] + Xz[n]

DFT Linearity (4):
@ DFT is Linear (cont..)

o Exercise:

+ Mathematically prove this linearity property for
the DFT
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Inverse DFT

Inverse DFT - IDFT (1):

@ Reverse the DFT Process
o DFT transforms time-domain data into frequency
domain representation
= With inverse DFT, we transform frequency domain
representation into time-domain representation
« Perform IDFT on X[m] frequency domain values

x[n] = AfX[m](cos(zimm/N)—jsin(27mm/N))
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