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The Frequency vs. the spatial Domain (this is very 
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Administrative Details (1):
Lab Six & Seven Today

No assignment 

Lab report required for Lab 7 only (not Lab 6)

Lab 6 for half the period followed by Lab 7 (but take 
as much time as you need to complete Lab 6)

Lab 7 requires IMAQ Vision Builder but no camera 
and equipment

Some Questions to Consider (1):
What determines the resolution of the DFT output ?

What is the relationship between the size of the DFT 
and the size of the input ?

Describe the symmetry property of the DFT

What is the 2D Fourier transform ?

How do we compute the 2D Fourier transform ?

How and why do we shift the origin of the 2D DFT ?

Introduction to the Two-
Dimensional Fourier 

Transform

Introduction (1):
Straightforward to Extend One-Dimensional 

DFT to Two Dimensions
Two-dimensional DFT of a function (image) f(x,y) 
of size M x N is given by
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Using Euler’s relationship, we have the following
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Introduction (2):
Straightforward to Extend One-Dimensional 

DFT to Two Dimensions (cont…)
We can also easily extend the IDFT to two-
dimensions as well.  Given F[u,v], IDFT is
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Using Euler’s relationship, we have the following
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Introduction (3):
Some Notes About 2D DFT

x = 0, 1, 2, …, M-1 and y =0, 1, 2, …, N-1

Variables u and v are the transform or frequency
variables and x, y are the spatial or image variables

As with 1D DFT, we can define the magnitude, 
phase and power spectrum in a similar manner

Magnitude
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Introduction (4):
Some Notes About 2D DFT (cont…)

Phase φ[u,v] 
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Power spectrum P[u,v] 

222 ],[],[],[],[ vuIvuRvuFvuP +==

where R[u,v] and I[u,v] are the real and imaginary 
components of the DFT F[u,v] respectively 

Introduction (5):
Some Notes About 2D DFT (cont…)

Typically we multiply input image by (-1)x+y (pixel-
by-pixel multiplication) prior to computing the DFT

Shifts the origin of the DFT to frequency 
coordinates (M/2, N/2) → the center of the   
M x N 2D DFT 
M, N → even integers 

After the multiplication, the DFT becomes 
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Introduction (6):
Some Notes About 2D DFT (cont…)

Which is equal to 
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When we implement 2D DFT summations run from 
u = 1 to M and v = 1 to N.  

The center of the transform is at u = (M/2) + 1 
and v = (N/2) +1 

Introduction (7):
DC Component 

DFT at the origin (0,0) in the frequency domain is 
equal to the average gray level (intensity) of image 
f(x,y)
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Some 2D DFT Relationships (1):
Conjugate Symmetry 

If image f(x,y) is real, its Fourier transform is 
conjugate symmetric

F(u, v) = F*(-u, -v)

where “*” indicates standard conjugate 
operation on a complex number

This implies the spectrum of the Fourier 
transform is symmetric

|F(u, v)| = |F(-u, -v)|

Some 2D DFT Relationships (2):
Conjugate Symmetry (cont…)

Conjugate symmetry and centering property 
simplify the specification of circularly symmetric 
filters in the frequency domain

Relationship Between Samples in the 

Frequency and Spatial Domains

∆u = 1/(M ∆x)  and ∆u = 1/(N ∆y) 

In other words → inverse relationship between 
spatial and frequency domain resolution
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2D DFT Example (1):
2D DFT of a “Simple” Image

20 x 40 rectangle superimposed on black 
background of size 512 x 512 

Image multiplied by (-1)x+y prior to computing DFT 
to center the spectrum in the frequency domain

Original 
image

Small white 
rectangle

Fourier 
transform 

“image”

2D DFT Example (2):
Some Comments regarding the Example

Inverse spatial vs. frequency relationship
Separation of “spectrum zeros” in u direction is 
twice separation in v direction → 1 to 2 size 
ratio of rectangle in the image

Spectrum was processed using log transform prior 
to displaying to enhance gray level

Recall, dynamic range of DFT is huge and if we 
didn’t process it, little detail would be evident
Most DFT spectra are processed with the log 
transform prior to displaying

Filtering in the Frequency
Domain

Properties Frequency Domain  (1):
Usually No Direct Association Between 

Specific Components of Image and its DFT
However some general statements can be made 
between frequency components of DFT and spatial 
characteristics

Frequency is directly related to rate of change 
so we can associate in frequency domain with 
patterns of intensity variation in image 
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Properties Frequency Domain  (2):
General Statements (cont…)

DFT at origin (0,0) gives average intensity of 
image (e.g., DC component)

Moving away from origin → low frequencies 
correspond to slowly changing image 
components (e.g., in an image of a room, these 
may correspond to a smooth wall or floor)
As we move further away from the origin, 
higher frequencies → correspond to the 
greater gray level (intensity) changes (e.g., 
edges in an image corresponding to large 
variations in the image)

Properties Frequency Domain  (3):
General Statements (cont…)

Graphical illustration

Scanning electron microscope image of 
damaged IC magnified 2500 times.
Interesting features 
→ strong edges at approx. +/- 45o

→ white oxide protrusions

DFT of image above
→ strong spectral features +/- 45o

→ vertical component just off to the   
left due to edges of oxide protrusion –
notice the “zeros” in the spectrum –
they correspond to the narrow vertical 
span of the protrusion

Properties Frequency Domain  (4):
Basics of Filtering in Frequency Domain

Consists of the following steps
1. Multiply image (in spatial domain) by (-1)x+y to 

center the transform about the origin 
2. Compute DFT F[u,v] of image in step 1
3. Multiply F[u,v] by desired filter function H[u,v]
4. Compute inverse DFT of result in step 3
5. Extract real part of the result in step 4
6. Multiply result of step 5 by (-1)x+y to “shift 

back” the image

Properties Frequency Domain  (5):
Basics of Filtering in Frequency Domain

Details regarding the filter H[u,v]
Also referred to as a filter transfer function
Called a filter because it suppresses certain 
frequencies while leaving other un-touched 
(e.g., low pass and high pass filters from DSP 
course) → remember, no such thing as an “ideal”
filter in reality!
In general, mathematically, the filtered DFT 
output is given by

G[u,v] = H[u,v]F[u,v]
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Properties Frequency Domain  (6):
G[u,v] =H[u,v]F[u,v] in Detail

Involves two-dimensional multiplication
Element-by-element basis

Zero-Phase filters
Elements of F[u,v] are typically complex values 
however, for our purpose, H[u,v] will typically 
be real 
Multiply both real and imaginary parts of the 
corresponding components of F by the value of 
H[u,v] → since phase is not altered, it is called 
a zero-phase filter

Properties Frequency Domain  (7):
Graphical Summary of DFT Filtering

These steps may vary but basic idea is the same 
Modify the transform of the image in some 
manner with some filtering function
Take the inverse of this filtered result

Basic Filters & their Properties  (1):
Notch Filter

“Zero DC filter” → suppose we want to set average 
intensity value to zero

Set this term to zero (e.g., F[0,0] = 0) in the 
frequency domain
Take inverse DFT of resulting transform → now 
average intensity value of image is zero!
This simple filter can be accomplished by
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Basic Filters & their Properties  (2):
Notch Filter (cont…)

Graphical example of notch filter → notice the 
overall decrease of gray level and notice that 
prominent edges now stand out

Prominent edges
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Basic Filters & their Properties  (3):
Notch Filter (cont…)

Remember
In reality, average of image cannot be equal to 
zero because image needs to have zero values 
for an average gray level to be zero and displays 
can’t handle negative values
We basically have to modify the image to display 
it → e.g., one way is to assign negative values a 
new value of zero (black) and all other values up 
from that (as done in previous example)

Basic Filters & their Properties  (4):
Low-Pass Filter

Low frequencies result from general gray level 
appearance of image (e.g., smooth areas)
A low pass filter will ideally eliminate high 
frequencies while completely leaving low 
frequencies un-touched

In reality of course, high frequencies are not 
entirely eliminated but rather attenuated
Low pass filtered image will have less sharp 
details than original since high frequencies which 
are responsible for sharp transitions are 
attenuated

Basic Filters & their Properties  (5):
Low-Pass Filter (cont…)

Graphical illustration (example) of low pass filter 
and resulting image after it has been filtered

Notice the blurred results since high edges etc. 
are removed

Low pass filter

Filtered image

Basic Filters & their Properties  (6):
High-Pass Filter

High frequencies are responsible for details in 
image such as edges and noise
A high-pass filter will ideally eliminate low 
frequencies while completely leaving high 
frequencies un-touched

In reality of course, low frequencies are not 
entirely eliminated but rather attenuated
High pass filtered image will have less gray level 
variation in smooth areas while transitional gray 
level detail will be emphasized making image 
appear sharper
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Basic Filters & their Properties  (7):
High-Pass Filter (cont…)

Graphical illustration (example) of high-pass filter 
and resulting image after it has been filtered

Sharp, with little gray level detail
Usually, constant is added to filter so it doesn’t 
remove F[0,0] completely

Low pass 
filter Filtered 

image

Frequency vs. Spatial Domain  (1):
Convolution Theorem

Establishes most fundamental relationship between 
frequency and spatial domains

Remember convolution in the spatial domain ?
Formally, convolution of two functions denoted 
by f(x,y) * h(x,y) is defined by
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Minus sign in h(x-m, y-n) means that the function h 
is mirrored about the origin

Inherent in the definition of convolution

Frequency vs. Spatial Domain  (2):
Convolution Theorem (cont…)
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Basically, above equation states the following
1. Flipping one function about the origin
2. Shifting that function with respect to the other 

by changing the values of (x, y)
3. Computing a sum of products over all values of m 

and n for each displacement (x, y) →
displacements (x, y) are integer increments that 
stop when the function no longer overlap 

Frequency vs. Spatial Domain  (3):
Convolution Theorem (cont…)

Consider the following definitions
F[u, v] → Fourier transform of f[x,y]
H[u, v] → Fourier transform of h[x,y]

One half of the convolution theorem states that 
f(x,y)*h(x,y) and F[u,v]H[u,v] comprise a Fourier 
transform pair. Mathematically, 

f(x,y)*h(x,y) ⇔F[u,v]H[u,v]

In words, convolution in the spatial domain is equal 
to multiplication in the frequency domain
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Frequency vs. Spatial Domain  (4):
Convolution Theorem (cont…)

Other half of the convolution theorem states that 
f(x,y)h(x,y) and F[u,v]*H[u,v] comprise a Fourier 
transform pair. Mathematically, 

f(x,y)h(x,y) ⇔F[u,v]*H[u,v]

In words, multiplication in the spatial domain is 
equal to convolution in the frequency domain

Frequency vs. Spatial Domain  (5):
Impulse Function

Impulse function of strength A located at 
coordinates (x0, y0)is denoted by  Aδ(x-x0, y-y0) and 
defined by the expression

∑∑
− −

=−−
1

0

1

0
0000 ),(),(),(

M N

yxAsyyxxAyxs δ

In words → summation of function s(x,y) multiplied 
by the impulse function is equal to the value of the 
function s(x,y) at the location of the impulse 
multiplied by the strength of the impulse

Frequency vs. Spatial Domain  (6):
Impulse Function (cont…)
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Aδ(x-x0, y-y0) is image of sine M x N (same size as 
function s)

Its composed of all zeroes except at (x0, y0) 
where the value here is A
Recall your test → the 3 x 3 filter with 
coefficient at origin equal to 1 and zero 
elsewhere is an example of an impulse function 
with A = 1

Frequency vs. Spatial Domain  (7):
Sifting Property

Convolution of a function with an impulse copies the 
values of the function at the location of the impulse 

Important → unit impulse located at origin (denoted 
by δ(x,y), mathematically
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Frequency vs. Spatial Domain  (8):
Sifting Property (cont…)

Convolution of a function with an impulse copies the 
values of the function at the location of the impulse 

Important → unit impulse located at origin (denoted 
by δ[x,y], mathematically
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In words → Fourier transform of impulse at origin 
of spatial domain is a real constant (e.g., no 
imaginary part).  If impulse were located elsewhere, 
transform would contain complex components

Frequency vs. Spatial Domain  (9):
Sifting Property (cont…)

Let f(x,y) = δ(x,y) and suppose we perform 
convolution with image (function) f(x,y)
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Frequency vs. Spatial Domain  (10):
Collectively, After Combining the Previous 

Results We Obtain the Following Relations

f[x,y] * h[x,y] ⇔ F[u,v]H[u,v]
δ[x,y] * h[x,y] ⇔ F[δ[u,v]]H[u,v]

h[x,y] ⇔ H[u,v]

Frequency vs. Spatial Domain  (11):
Filters in the Spatial and Frequency Domain 

Form a Fourier Transform Pair
Given filter in frequency domain to obtain filter in 
spatial domain

Take inverse DFT of the frequency domain 
representation of the filter

Given filter in spatial domain to obtain filter in 
frequency domain

Take DFT of the spatial domain representation 
of the filter
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Frequency vs. Spatial Domain  (12):
Some Notes 

All functions previously described are of size M x N 
(e.g., images and frequency domain representation)

Given same size filters in both spatial and 
frequency domains, typically more 
computationally efficient to filter in frequency 
domain
But not always worth taking DFT of spatial 
domain function to get frequency domain rep.

Gaussian Filters  (1):
What is a Gaussian Function ?

Normal distribution with mean µ and variance σ2

Defined by the following distribution function

Graphical illustration of the 
Gaussian distribution - 1D

Gaussian Filters  (2):
Gaussian Function as a Filter

Very Useful and important 
Their shape is easily specified
Both DFT and IDFT of a Gaussian is also a 
Gaussian
An averaging (“blurring”) filter

Gaussian Filters  (3):
Mathematically → Fourier Transform Pair

Let H[u] denote frequency domain Gaussian filter 
given by

22 2/][ σuAeuH −=
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Corresponding filter in the spatial domain is given 
by

Both functions above comprise a Fourier transform 
pair → both Gaussian and real valued (e.g., no 
complex numbers!
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Gaussian Filters  (4):
Fourier Transform Pair (cont…)

Both functions behave reciprocally to each other
When H[u] has a broad profile (and therefore 
large σ) → h[x] will have a narrow profile
When h[x] has a broad profile (and therefore 
large σ) → H[u] will have a narrow profile

Gaussian Filters  (5):
Graphical Examples of Gaussian Filters

Gaussian 
frequency 

domain low pass 
filter

Gaussian 
frequency 

domain high 
pass filter

Corresponding 
spatial domain 
Gaussian low 
pass filter

Corresponding 
spatial domain 
Gaussian high 

pass filter


