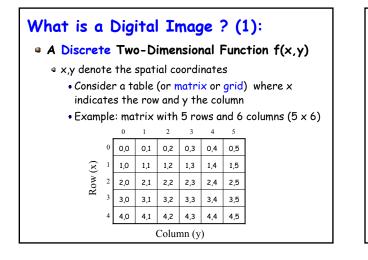


Overview (1):

- What is Digital Image Processing (DIP) ?
 - What is an image ?
 - Relationship to Computer Vision
- Origins of Digital Image Processing
 - Brief historical overview
- Fields that Use Digital Image Processing
 - Image categorization and the electromagnetic spectrum (EM)
 - Gamma ray, x-ray, ultraviolet, visible, infrared, microwave, radio wave

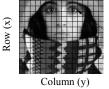

Overview (2):

- Fundamental Steps
 - Methodologies
 - Overview of what this course will cover
- Components of a Digital Image Processing

System

- Hardware
- Software
- Conclusions
 - Summary

What is Digital Image Processing ?



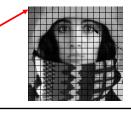
What is a Digital Image ? (2):

Intensity

- The value (or amplitude) of the function f at spatial coordinates (x,y)
 - Finite and discrete when considering digital images
 - \bullet Non-discrete and non-finite \rightarrow not a digital image!

NOTE:

The digital image is obtained by sampling an analog 2D image but for now, lets not be concerned with this. Sampling will be discussed next week!


What is a Digital Image ? (3):

- Intensity (continued...)
 - The intensity of a digital image can vary from a wide range of values
 - Typical examples: 0 255, 0 32,767 etc...
 - Can also have more than one intensity value associated with each spatial location
 - Color images → one intensity value for each color (e.g., red, green, blue color channels - more of this in the future)...
 - \bullet Single color \rightarrow intensity also known as gray level

What is a Digital Image ? (4):

Pixel

- Pixel
 - Each element of a digital image e.g., each entry in the grid (matrix) with its distinct spatial location
 - Also known as
 - Picture element or pel
 - Image element

Digital Image Processing (1):

Definition

- Processing digital images with a digital computer
- Two Principle Applications of Digital Image Processing
 - Improvement of images for human interpretation
 - Processing of image data for storage, transmission and representation for autonomous machine perception

Digital Image Processing (2):

Covers a Large and Varied Field of

Applications

- Although the human visual system can only respond to the visual band of the electromagnetic spectrum, machines can be used to image (sample) the (almost) entire electromagnetic spectrum
 - More about this later

Digital Image Processing (3):

Relationship to Other Fields

- Computer vision
 - Create real-world model from one or more images
 - Recovers useful information about a scene from a 2D projection of the 3D world
 - Ultimately emulate human visual system!
- Where does image processing stop and image analysis/computer vision start ?
 - No clear cut boundaries!
 - How about defining image processing such that both input and output are images ?

Digital Image Processing (4):

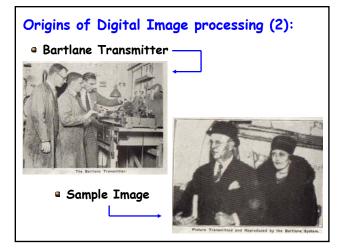
- Relationship to Other Fields (cont...)
 - Too restrictive! e.g., then the common operation of computing the average intensity of an image is not part of image processing!
 - A useful paradigm is to consider three types of computerized processes
 - \bullet Low level \to primitive operations such as noise reduction, contrast enhancement, image sharpening
 - \bullet Mid Level \rightarrow segmentation, classification,
 - \bullet High level \rightarrow making sense of recognized objects, even performing cognitive functions

Digital Image Processing (5):

Definition Used in this Course

 Processes whose inputs and outputs are images but we also include processes which extract attributes from images including the recognition of individual objects

• As an "Aside" - Computer Graphics


- Computer used to recreate a "picture" given some description of a scene/environment
 - "Almost" like the opposite problem to image processing although there is some overlap!

Origins of Digital Image Processing (1):

One of the First Applications was in the

Newspaper Industry

- Pictures sent by submarine cable between Europe and North America
 - Bartlane transmission system \rightarrow transfer picture in a couple of hours instead of more than one week
 - Code picture at the transmitting end, send coded data over cable, receive and decode at the receiving end
 - Five discrete levels of gray and later up to 15

Origins of Digital Image Processing (3):

- Early Examples did not Include Computer!
 - Technically, do not fall into our definition of image processing since we require the use of a computer!
 - Although the notion of a computer can be traced back more than 5000 years, the modern digital computer dates back to the 1940s and the two key concepts introduced by John von Neumann
 - 1. Memory to hold stored programs and data
 - 2. Conditional branching

Origins of Digital Image Processing (4):

- Image Processing VERY Computationally Expensive!
 - Early computers were very restrictive until the intro. of the transistor, high level programming languages, VLSI etc.
 - Not until the 1960s that the field of digital image processing, as we know it today was born!
 - Many motivations
 - Space/arms race of the cold war era
 - Medicine medical imaging
 - Satellites etc.

Origins of Digital Image Processing (5):

- From 1960s Until Presently, Digital Image Processing has Grown Vigorously!
 - In addition, to space exploration and medicine, many more applications have arisen
 - Geographical
 - Industrial
 - Archeology
 - Satellite technology
 - Law enforcement
 - Biology, astronomy

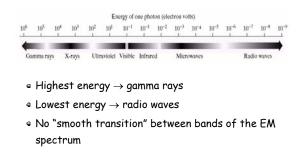
Origins of Digital Image Processing (6):

- Digital Image Processing no Longer Restricted to Professionals
 - With the (affordable) computing power currently available and the internet, image processing has found its way into most peoples homes
 - PhotoShop™
 - Microsoft[™] imaging utilities standard on Windows operating system
 - etc...
 - How many times you modified an image on your PC ?

Fields that Use Digital Image Processing

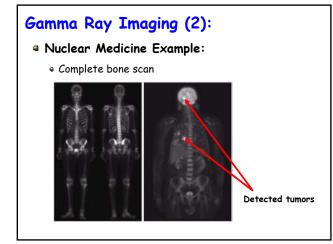
Introduction (1):

Digital Image Processing is All Around Us

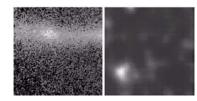

- Every area of technical endeavor impacted by it • Immense breadth and importance
- Given this large breadth, images are typically categorized according to their source
 - Principle (and most familiar) source for images today is the electromagnetic spectrum
 - \bullet This is not the only source \rightarrow acoustic, ultrasonic, electronic

Electromagnetic Spectrum (1):

- Electromagnetic Waves
 - Conceptualized as:
 - \bullet Wave theory \rightarrow propagating sinusoidal waves of varying wavelength or
 - Particle theory → stream of mass-less particles containing a certain amount of energy, moving at the speed of light (known as a photon)
 - There is also the dual theory in which both forms are present! We won't worry about this !!!


Electromagnetic Spectrum (2):

 Grouping of Spectral Bands of EM Spectrum According to Energy per Photon we Obtain:

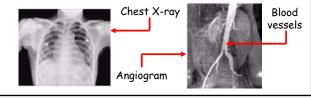

Gamma Ray Imaging (1):

- Primary Uses:
 - Nuclear medicine (detect tumors etc.) Idea:
 - Patient injected with radioactive isotope that emits gamma rays as it decays
 - Emission of gamma rays are collected by gamma ray detectors and image is constructed
 - Positron-Emission-Tomography (PET)
 - patient given radioactive isotope that emits positrons as it decays
 - \cdot When positron meets electron ,both destroyed and two gamma rays given off
 - Gamma rays are detected and using special detectors an image is constructed

Gamma Ray Imaging (3):

- Primary Uses (cont...)
 - Astronomical observations
 - Many "objects" in space (e.g., stars ,galaxies etc.) naturally emit gamma ray radiation special sensors can detect and record this

Star in Cygnus constellation exploded 15,000 years ago and created a gas cloud which emits gamma radiation


X-Ray Imaging (1):

Oldest Sources of EM Radiation for Imaging

- Best known for medical diagnostics
 - Patient placed between "X-ray tube" and special film sensitive to X-ray radiation
 - Electrons are emitted from X-ray tube and go through patient
 - Intensity of X-rays is modified by absorption as they go through patient
 - Intensity collected at film and image is then created

X-Ray Imaging (2):

- Other Applications of X-ray Imaging
 - Angiography
 - Obtain images of blood vessels (angiograms)
 - X-ray contrast medium injected via catheter at appropriate location
 - X-ray image obtained and blood vessels highlighted

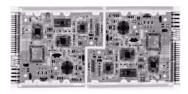
X-Ray Imaging (3):

• Other Applications of X-ray Imaging (cont...)

- Computerized axial tomography (CAT scan)
 - The process of using computers to generate a three-dimensional image from flat (e.g., two-dimensional) X-ray pictures, one slice at a time...
 - CAT image is a "slice" taken perpendicularly through the patient
 - Patient is moved in the longitudinal direction
 - Has revolutionized medical medicine due to their high resolution and 3D capabilities

X-Ray Imaging (4): Example CAT of Head

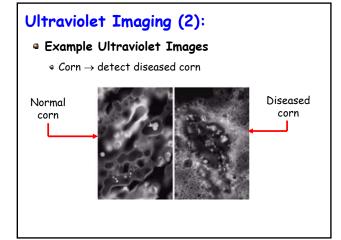
CAT Scan Apparatus



X-Ray Imaging (5):

Other Applications in Addition to Medicine

Industrial processes


• Imaging of parts/components to detect cracks and flaws

Commonly used to examine circuit boards to detect missing parts, cracks etc.

Ultraviolet Imaging (1):

- Varied Applications
 - Lithography
 - Industrial inspection
 - $\ensuremath{\,^\circ}$ Microscopy \rightarrow fluorescence microscopy one of the fastest growing fields of microscopy
 - Lasers
 - Biological imaging
 - Astronomical observation

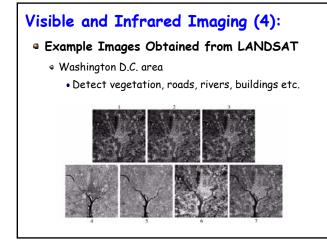
Visible and Infrared Imaging (1):

Obviously the Most Widely Used Given our

Sensitivity to the Visual Spectrum

- = Low frequency (red) $\rightarrow 4.3 \times 10^{14} \mbox{ Hz}$
- ${\mbox{ \ o }}$ High frequency (violet) ${\mbox{ \ o }}$ 7.5 x 10^{14} Hz
- Often used in conjunction with infrared imaging
- Various applications
 - Light microscopy
 - Law enforcement
 - Astronomy
 - Industrial applications
 - Remote sensing

Visible and Infrared Imaging (2):


Remote Sensing

- Definition:
 - The process of obtaining data or images from a distance, as from satellites or aircraft
- Major area of visual/infrared imaging
- Usually covers several bands of the visual/infrared spectrum
- NASA's LANDSAT satellite
 - \bullet Primary purpose \rightarrow Obtain and transmit images of earth from space for environmental monitoring purposes

Visible and Infrared Imaging (3):


- Thermatic Bands of LANDSAT
 - Bands of interest

Band No.	Name	Wavelength (µm)	Characteristics and Uses
1	Visible blue	0.45-0.52	Maximum water penetration
2	Visible green	0.52-0.60	Good for measuring plant vigor
3	Visible red	0.63-0.69	Vegetation discrimination
4	Near infrared	0.76-0.90	Biomass and shoreline mapping
5	Middle infrared	1.55-1.75	Moisture content of soil and vegetation
6	Thermal infrared	10.4-12.5	Soil moisture; thermal mapping
7	Middle infrared	2.08-2.35	Mineral mapping

Visible and Infrared Imaging (5):

Further Examples of Visual Satellite Images
 Hurricane Andrew

Visible and Infrared Imaging (6):

- Infrared Image
 - Example
 - North America from Space

Microwave Imaging (1):

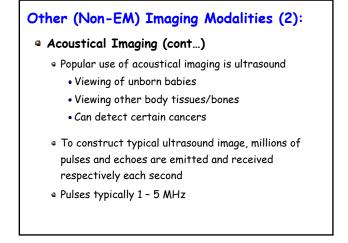
- Dominant Use is Radar
 - Ability to collect data over virtually any region, at any time, regardless of weather conditions or ambient light conditions
 - Penetrate clouds
 - At times, can see through vegetation, ice, sand...
 - Operates similar to flash camera
 - Provides its own illumination (microwave pulses) to illuminate area of interest and then "snaps" image
 - Instead of camera lens, antenna is used

Microwave Imaging (2):

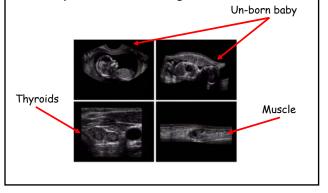
- Example Microwave Image
 - Image of mountainous region of Tibet obtained from space satellite

Radio Band Imaging (1):

- Dominant Use is Medicine and Astronomy
 - In medicine, popular technique is magnetic resonance imagine (MRI)
 - Patient placed in powerful magnet
 - Radio waves are passed through patient's body in short pulses
 - Each pulse causes another pulse to be emitted by the patients tissues
 - Location and strength of the pulses is determined by computer and 2D image is created based on this information

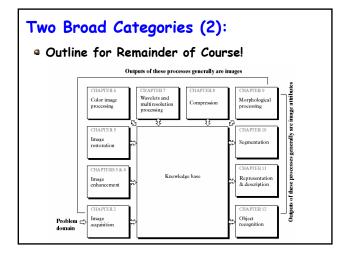

Radio Band Imaging (2):

- Example MRI Image
 - ${\ensuremath{\,^\circ}}$ Human knee and spine \rightarrow common uses of MRI
 - MRI images of any plane can be made


Other (Non-EM) Imaging Modalities (1):

- Acoustical Imaging
 - Sound waves (typically low frequency, e.g., < 100Hz) are emitted from transmitter
 - Reflections of transmitted sound recorded by receiver
 - Image constructed based on time of arrival and intensity of echoes
 - Many applications
 - Geological exploration (oil and mineral exploration)
 - Industry
 - Medicine (ultrasound)

Other (Non-EM) Imaging Modalities (3):


• Example Ultrasound Images

Fundamental Steps in Digital Image Processing

Two Broad Categories (1):

- Methods Whose Input and Output are Images
- Methods Whose Inputs are Images but
 Outputs are Attributes Extracted from these
 Images

Image Enhancement (1):

Bring out Details that are Obscured or

Highlight Certain Areas of an Image

- Simplest/most appealing areas of image processing
- Subjective \rightarrow highly dependent on the human observer
 - My idea of a "good" image may differ from yours!
- Examples include adjusting image
 - Brightness
 - Contrast
 - Color etc...

Image Enhancement (2):

- Example
 - Removing "red-eye"

Before

Image Restoration (1):

- Improving Image Appearance
 - Real-life images typically contain noise which can arise from many aspects of the imaging process
 - Sensor itself
 - Environmental noise
 - Sampling
 - Objective
 - Typically based on mathematical or probabilistic models of image degradation

Color Image Processing (1):

Most "Modern-day" Images are not Gray-

Scale

- Consider the internet!
- Typically three color channels
 - Red, green, blue (r,g,b)
 - Many times, each color is treated separately

Compression (1):

 Techniques for Reducing Image Storage Requirements or bandwidth Required to

Transmit Images

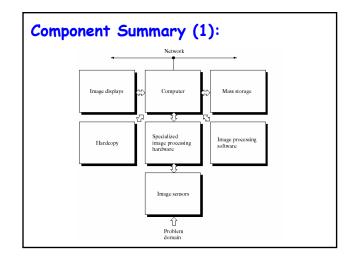
- Images can be very large in terms of memory especially when considering color images and potentially, image sequences over time
- Storage capacity has increased tremendously over the last 10 years but transmission capacity has not been keeping up!

Morphological Processing (1):

- Extraction of Image Components
 - These components may be useful in the representation of and description of shape

Segmentation

- Partition an image into its constituent parts or objects
 - Background vs. foreground
 - Finding a specific object in an image
 - Typically not an easy task!


Description and Representation (1):

- Extraction of Image Components
 - Converting image data to a form suitable to computer processing
 - Typically follows the output of the segmentation stage which outputs ray pixel data representing either a boundary or a region
 - Decide whether data be represented as a boundary or a complete region
- Recognition
 - Assign labels to objects based on its descriptors

Knowledge Base (1):

- Prior Knowledge
 - Knowledge about a problem can be incorporated into a image processing modules via the knowledge base
 - Knowledge may include
 - Knowing regions in an image were an object may reside
 - Can reduce total processing e.g., no need to search the entire image!

Components of a Digital Image Processing System

Component Summary (2):

Large Scale vs. Small Scale

- Until recently (e.g., late 1980s) image processing systems were fairly large and substantial
- Recently, shifting towards single peripheral boards designed to be compatible with standard buses
 - Can be used with specialized equipment, workstations and even standard PCs
- Recent trends also focus on image processing software and given the advances in computing power and storage
 - Many tasks can now be performed in software