

ELIC 629

Digital Image Processing

Winter 2006

Convolution Theorem, Discontinuity Detection and Image Segmentation

Bill Kapralos

Tuesday, April 18 2006

ELIC 629, Fall 2005, Bill Kapralos

Overview (1):

- Before We Begin
 - Administrative details
 - \bullet Review \rightarrow some questions to consider
- Convolution Theorem
 - Brief review from last week
 - Properties
 - Gaussian filters

Overview (2):

- Discontinuity Detection
 - Introduction to image segmentation
 - Point detection
 - Line detection
 - Edge detection
- Thresholding
 - Foundation
 - Introduction

Before We Begin

Administrative Details (1):

- Lab Eight Today
 - Final lab
 - No lab report required
 - Lab does include an assignment
 - Assignment is very good practice for your exam I recommend you complete it!

Administrative Details (2):

- Final Exam April 25 2006
 - Short review at the end of this lecture
 - I will make some comments regarding the exam
 - Exam will be similar in format to mid-term
 - No surprises!
 - Focus on material after mid-term but you are still responsible for all material
 - Still need to know filtering in the spatial domain

Some Questions to Consider (1):

- Why filter in the frequency domain?
- What are the steps to filtering an image in the frequency domain?
- Why do we shift the origin of the DFT output?
- From the origin, what can we say about the DFT frequency?
- What is a low/high pass frequency domain filter?
- What is a "notch" filter?

Convolution Theorem

Frequency vs. Spatial Domain (1):

- Convolution Theorem
 - Establishes most fundamental relationship between frequency and spatial domains
 - Remember filtering in the spatial domain?
 - Formally, convolution of two functions denoted by f(x,y)* h(x,y) is defined by

$$f(x,y)*h(x,y) = \frac{1}{MN} \sum_{0}^{M-1} \sum_{0}^{N-1} f(m,n)h(x-m,y-n)$$

- Minus sign in h(x-m, y-n) means that the function h is mirrored about the origin
 - Inherent in the definition of convolution

Frequency vs. Spatial Domain (2):

Convolution Theorem (cont...)

$$f(x,y)*h(x,y) = \frac{1}{MN} \sum_{0}^{M-1} \sum_{0}^{N-1} f(m,n)h(x-m,y-n)$$

- Basically, above equation states the following
 - 1. Flipping one function about the origin
 - 2. Shifting that function with respect to the other by changing the values of (x, y)
 - 3. Computing a sum of products over all values of m and n for each displacement (x, y) → displacements (x, y) are integer increments that stop when the functions no longer overlap

Frequency vs. Spatial Domain (3):

- Convolution Theorem (cont...)
 - Consider the following definitions
 - $F[u, v] \rightarrow Fourier transform of f[x,y]$
 - $H[u, v] \rightarrow Fourier transform of h[x,y]$
 - One half of the convolution theorem states that f(x,y)*h(x,y) and F[u,v]H[u,v] comprise a Fourier transform pair. Mathematically,

$$f(x,y)*h(x,y) \Leftrightarrow F[u,v]H[u,v]$$

 In words, convolution in the spatial domain is equal to multiplication in the frequency domain

Frequency vs. Spatial Domain (4):

- Convolution Theorem (cont...)
 - Other half of the convolution theorem states that f(x,y)h(x,y) and F[u,v]*H[u,v] comprise a Fourier transform pair. Mathematically,

$$f(x,y)h(x,y) \Leftrightarrow F[u,v]*H[u,v]$$

 In words, multiplication in the spatial domain is equal to convolution in the frequency domain

Frequency vs. Spatial Domain (5):

- Filters in the Spatial and Frequency Domain
 Form a Fourier Transform Pair
 - Given filter in frequency domain to obtain filter in spatial domain
 - Take inverse DFT of the frequency domain representation of the filter
 - Given filter in spatial domain to obtain filter in frequency domain
 - Take DFT of the spatial domain representation of the filter

Frequency vs. Spatial Domain (6):

- Some Notes
 - All functions previously described are of size M x N (e.g., images and frequency domain representation)
 - Given same size filters in both spatial and frequency domains, typically more computationally efficient to filter in frequency domain
 - But not always worth taking DFT of spatial domain function to get frequency domain rep.

Gaussian Filters (1):

- What is a Gaussian Function?
 - Normal distribution with mean μ and variance σ^2
 - Defined by the following distribution function

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$$

Graphical illustration of the Gaussian distribution - 1D

Gaussian Filters (2):

- Gaussian Function as a Filter
 - Very Useful and important
 - Their shape is easily specified
 - Both DFT and IDFT of a Gaussian is also a Gaussian
 - · An averaging ("blurring") filter

Gaussian Filters (3):

- Mathematically → Fourier Transform Pair
 - Let H[u] denote frequency domain Gaussian filter given by

$$H[u] = Ae^{-u^2/2\sigma^2}$$

 Corresponding filter in the spatial domain is given by

$$h[x] = \sqrt{2\pi} \sigma A e^{-2\pi^2 \sigma^2 x^2}$$

 Both functions above comprise a Fourier transform pair → both Gaussian and real valued (e.g., no complex numbers!

Gaussian Filters (4):

- Fourier Transform Pair (cont...)
 - Both functions behave reciprocally to each other
 - When H[u] has a broad profile (and therefore large σ) \rightarrow h[x] will have a narrow profile
 - When h[x] has a broad profile (and therefore large σ) \to H[u] will have a narrow profile

Gaussian Filters (5): Graphical Examples of Gaussian Filters Gaussian Gaussian frequency frequency domain high domain low pass pass filter filter Corresponding Corresponding spatial domain spatial domain . Gaussian low Ġaussian high pass filter pass filter

Discontinuity Detection

Image Segmentation (1):

- What is Image Segmentation?
 - Segmentation sub-divides an image into a number of regions or objects
 - How far this sub-division is carried out depends on the task
 - An extremely difficult yet important task
 - Its accuracy determines the eventual success or failure of any automated analysis procedure which rely on its output

Image Segmentation (2):

- Image Segmentation Algorithms Generally
 Based on Two Basic Properties of Intensity
 - Discontinuity
 - Partition image based on abrupt changes in intensity (e.g., edges where there is a large change in intensity between adjacent pixels)
 - Similarity
 - Partition image into regions that are similar based on some pre-defined criteria (e.g., intensity of pixels within a certain range)

Introduction (1):

- Will Focus on Three Types of Discontinuities
 - 1. Points
 - 2. Lines
 - 3. Edges
 - Regardless the type of discontinuity, most common approach to locating them is to "filter" the image with a 3 x 3 mask (e.g.,, convolution)
 - Mask coefficients are chosen depending on the type of discontinuity being searched for

Introduction (2):

- Recall Spatial Domain Filtering with Mask
 - Sum of products of coefficients with the gray levels in image encompassed by the mask

$$R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + ... + w(0,0)f(x,y) + ... + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1)$$

٠	w(-1,-1)	w(-1,0)	w(-1,1)		
	w(0,-1)	w(0,0)	w(0,1)		
	w(1,-1)	w(1,0)	w(1,1)		

Example of a 3x3 template with its coefficients

Point Detection (1):

- In Principle, Straightforward
 - Using the following mask, a point is detected at the location at which the mask is centered on if

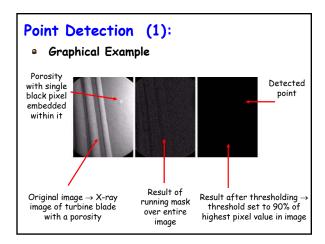
|R| ≥ T

- R → output of filtering operation (e.g., sum of filter coefficients multiplied by corresponding image intensities)
- T → threshold (an intensity value, recall your labs)

-1	-1	-1
-1	8	-1
-1	-1	-1

Point Detection (2):

- Basic Idea
 - Isolated point (a point whose gray level is much different from its background) will be different from its surroundings and will be detected by the mask used
 - Examine mask coefficients
 - Sum of coefficients equals $0 \to \text{mask response}$ will be zero in areas of constant gray level



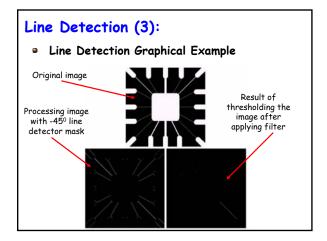
Line Detection (1):

- More Difficult Than Point Detection
 - Lines can be oriented in any manner (e.g., horizontally, vertically, +/-45°, etc.)
 - Different mask to detect each line orientation

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
ŀ	Horizontal			+45°			Vertica	il		-45°	

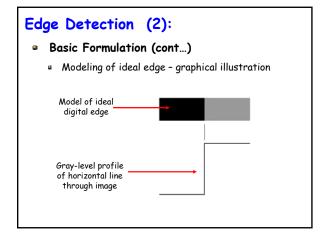
Line Detection (2):

- Notes Regarding the Line Detection Masks
 - Typically these masks detect lines 1 pixel thick
 - Preferred direction of each mask is weighted with a larger coefficient than the other possible directions (e.g., 2 instead of -1)
 - Coefficients sum to zero
 - Response will be equal to zero in areas of constant gray level



Edge Detection (1):

- Basic Formulation
 - What is an edge (review) → set of connected pixels that lie on a boundary between two regions
 - Different from a boundary → boundary is more
 of a "global" concept whereas edge is a more of a
 "local" concept
 - Modeling of an ideal edge
 - A set of connected pixels, each of which is located at an orthogonal step transition in gray level



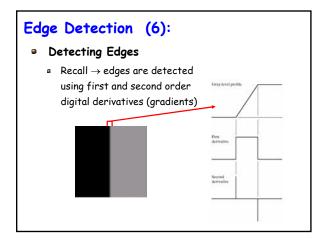
Edge Detection (3):

- In Practice, Ideal Edges Do Not Exist!
 - Sampling and the fact that sampling acquisition equipment etc. is far from perfect leads to edges that are blurred
 - Changing illumination (lighting conditions) will cause changes to edges & all parts of an image in general
 - Changes in lighting is actually a HUGE problem for vision/image processing tasks → many algorithms will not generalize across different lighting conditions
 - Color constancy → a big field in computer vision but still an un-solved problem!

Edge Detection (4): In Practice, Ideal Edges Dont Exist! (cont..) In reality, edges have a more "ramp-like" profile The slope of the ramp is inversely proportional to the degree of blurring in the edge Model of ramp digital edge Gray-level profile of horizontal line through image

Edge Detection (5):

- In Practice, Ideal Edges Dont Exist! (cont..)
 - Edge is no longer a one-pixel thick path
 - An edge point is now any point contained in the ramp and an edge would be a set of such points which are connected
 - Thickness of edge is given by length of ramp which is determined by the slope which itself is determined by the amount of blurring
 - Blurred edges are typically thicker e.g., the greater the blurring → the thicker the edge



Edge Detection (7):

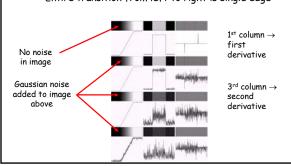
- Detecting Edges (cont...)
 - Remember
 - First derivative → positive at points of transition into and out of ramp (moving from left to right) & zero in constant gray-level areas
 - Second derivative → positive at transition associated with the "dark" side of edge, negative at light side of edge and zero along ramp & in areas of constant gray level

Edge Detection (8):

- Detecting Edges (cont...)
 - Some conclusions regarding derivatives & edges
 - Magnitude of first order derivative can be used to detect presence of edge at point
 - Sign of second order derivative can be used to determine whether edge pixel itself lies on dark or bright side of edge
 - Second order derivative produces two values for every edge & therefore zero-crossing
 - Zero-crossing → imaginary straight line drawn from positive to negative value would cross zero near midpoint of the edge

Edge Detection (9):

- Edge Detection Example
 - Entire transition from left to right is single edge



Edge Detection (10):

- Edge Detection Example
 - Conclusions we can draw from previous examples
 - To be classified as edge point, gray-level transition must be significantly stronger than background
 - Threshold used to determine whether it is different from background → e.g., will be classified as edge only if derivative is greater than some but thresholds have their own problems!
 - The set of all these points greater than the threshold and connected comprise the edge

Thresholding

Introduction (1):

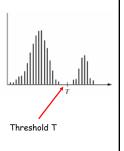
- Central to Image Processing/Computer Vision
 - Essentially, thresholding basically involves performing a check at each pixel location
 - This should be familiar from your labs!

For each pixel (x,y) in image

- 1. Obtain pixel intensity p
- 2. Compare p; with pre-defined threshold value T
 - if $p_i \ge T$ then $p_i = 1$ (p_i is an object point)
 - if $p_i < T$ then $p_i = 0$ (p_i is background point)

Introduction (2):

- Graphical Example
 - Histogram of image with light object and dark background
 - After performing thresholding of image with threshold T, pixels corresponding to object will be highlighted (e.g., set to 1) while background pixels will be set to zero



Introduction (3):

- Multi-Level Thresholding
 - Can be used to locate (detect) multiple objects where each object is within some range of intensities
 - Multiple thresholds and therefore multiple checks per pixel
 - For example, two objects, two threshold T1, T2
 - Pixel belongs to one object if $T_1 < f(x,y) \le T_2$
 - Pixel belongs to other object if f(x,y) > T2
 - Pixel belongs to background if f(x,y) ≤ T₁

