

ELIC 629

Digital Image Processing

Winter 2006

Introduction to the Fourier Transform

Bill Kapralos

Tuesday, April 3 2006

ELIC 629, Fall 2005, Bill Kapralos

Overview (1):

- Before We Begin
 - Administrative details
 - \bullet Review \rightarrow some questions to consider
- The Fourier Transform
 - Introduction
 - Background
- The One-Dimensional Fourier Transform
 - Introduction
 - Properties

Overview (2):

- The Two-Dimensional Fourier Transform
 - Introduction
 - Relationships
 - Properties
- Filtering in the Frequency Domain
 - Properties of the frequency domain

-		
-		

duction to Digital Image Processing	
Before We Begin	
Administrative Details (1): Lab Six Today We will continue with Lab 6 today Lab report required Requires the use of Matlab No camera required Ideally, you will read and look over the lab before coming to the lab!	
Some Questions to Consider (1): a What is the gradient operator? What is a first-order derivative? What is a second-order derivative? What is a Sobel operator?	

ELIC 629, Fall 2005

coefficient

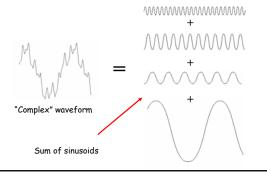
different frequencies, each multiplied by different

Doesn't matter how complicated the function is,

as long as it repeats itself!

Background (3):

Graphical Illustration



Background (4):

- Can Even Represent Non-Periodic, Finite Functions as the Integral of Sines and/or Cosine Functions
 - Provided area under resulting curve of the function is finite
 - This formulation is known as a Fourier transform as opposed to a Fourier series
 - Even more useful when considering practical problems → many times functions (signals) in "reallife" are not periodic and are finite

Background (5):

- Important Characteristics of Both Fourier
 Transform and Fourier Series
 - Can completely recover (reconstruct) the original (spatial representation) function with NO loss of information
 - Can work in the Fourier Domain and then return back to spatial domain → many problems are easier solved in the Fourier domain

Background (6):

- The Functions (Images) we are Dealing with Are Finite in Duration
 - We are therefore primarily interested and will be dealing with, is the Fourier transform
- Many Image Enhancement Techniques in the Fourier Domain
 - Extremely useful
 - · Can be easier to understand what exactly is happening and how the operations work

The One-Dimensional Fourier Transform

I

'n	troduction (1):
9	Originally, Fourier Transform was
	Formulated with Continuous Time Signals
	We are dealing with sampled images
	 Finite intensity values and finite in duration
	 In other words, we are dealing with a discrete signal → remember, an image itself is a signal as in
	your DSP course, except we are now dealing with a
	two-dimensional signal as opposed to a one- dimensional signal you are familiar with
	Discrete Fourier Transform (DFT) introduced to
	handle discrete signals

Discrete Fourier Transform (1):

- One of the Most Common and Powerful Procedures Encountered in the Field of Digital Signal Processing in General
 - Enables us to analyze, manipulate and synthesize signals in ways not possible with continuous (analog) signal processing
 - Used in every field of engineering
 - A solid understanding of the DFT is extremely important!

Discrete Fourier Transform (2):

- What is the Discrete Fourier Transform?
 - A mathematical procedure used to determine the frequency (or harmonic) content of a discrete signal
 - Remember → discrete signal obtained by periodically sampling a continuous time signal in the time domain
 - Based on the Continuous Fourier Transform (CFT), denoted by X(f) (or F(u))

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Discrete Fourier Transform (3):

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

- Lets Analyze This Expression:
 - $f \rightarrow$ frequency (spectral component)
 - $x(t) \rightarrow continuous time domain signal$
 - $e^{-j2\pi ft} \rightarrow a$ sinusoid (sine wave) of frequency f
 - In words → Fourier Transform of frequency component f is a correlation of the infinite input signal at each time step with a sine wave of frequency f → X(f) tells us "how much" of the sine wave of frequency f the signal contains

ELIC	629,	Fall	2005

Discrete Fourier Transform (4):

Discrete Fourier Transform (DFT)
 Mathematically

$$X[m] = \frac{1}{M} \sum_{n=0}^{M-1} x[n] e^{-j2\pi n m/N}$$

• Using Euler's Relationship $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$ we obtain:

$$X[m] = \frac{1}{M} \sum_{n=0}^{M-1} x[n](\cos(2\pi n m / N) - j\sin(2\pi n m / N))$$

Discrete Fourier Transform (5):

$$X[m] = \sum_{n=0}^{M-1} x[n](\cos(2\pi nm/N) - j\sin(2\pi nm/N))$$

- $\quad \text{ a } \quad \text{$X[m] \to mth DFT output e.g., $X[0]$, $X[1]$... $X[M-1]$}$
- $m \rightarrow$ index of the DFT output in frequency domain (m = 0, 1, 2, ... M-1)
- $x[n] \rightarrow$ sequence of input (discrete) samples $(x[0], x[1], x[2] \dots x[M-1])$
- \bullet n \rightarrow (discrete) time domain index of input samples
- j = sqrt(-1) (remember, complex numbers!)
- $M \rightarrow$ number of samples (same for input and DFT)

Discrete Fourier Transform (6):

- Some Notes Regarding the DFT
 - Indices for input samples and DFT output samples always go from 0 to M-1
 - With M input time domain samples, the DFT determines the spectral content of the input at M equally spaced frequency points
 - M is an important parameter and determines
 - 1. How many input samples are needed
 - 2. Resolution of the frequency domain results
 - Amount of processing time required to calculate an M-point DFT

	_

Discrete Fourier Transform (7):

- Some Notes Regarding the DFT (cont...)
 - In words:
 - Each X[m] DFT output is the sum of a point for point product between an input sequence of input values and a complex sinusoid of the form cos(θ) - jsin(θ)
 - Exact frequencies of the of the different sinusoids depend on sample rate \mathbf{f}_s and number of samples \mathbf{M}
 - Fundamental frequency of the sinusoids is f_s /M and all other X[m] analysis frequencies are integer multiples of the fundamental!

Discrete Fourier Transform (8):

- Some Notes Regarding the DFT (cont...)
 - The M separate DFT analysis frequencies are

$$f_{analysis}(m) = \frac{mf_s}{M}$$

- So, X[0] gives us magnitude of an OHz ("DC") component contained in the signal, X[1] gives us magnitude of the fundamental component, X[2] gives us magnitude of 2 x fundamental component contained in signal etc.
- Finally, keep in mind, we are dealing with complex sinusoids → magnitude and phase!

Discrete Fourier Transform (9):

- Determining the Magnitude and Phase
 Contained in each X[m] Term
 - We can represent an arbitrary DFT output value
 X[m] by its real and imaginary parts

 $X[m] = X_{real}[m] + jX_{imag}[m] = X_{mag}[m]$ at angle of $X_{\theta}[m]$

The magnitude of X[m] is

$$X_{mag}[m] = \left| X[m] \right| = \sqrt{X_{real}[m]^2 + X_{imag}[m]^2}$$

ELIC	629,	Fall	2005

Bill Kapralos

Discrete Fourier Transform (10):

- Determining the Magnitude and Phase
 Contained in each X[m] Term (cont...)
 - The phase angle of X[m], $X_{\theta}[m]$ is

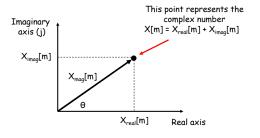
$$X_{\Theta}[m] = \tan^{-1}\left(\frac{X_{imag}[m]}{X_{real}[m]}\right)$$

 The power of X[m], known as the power spectrum or spectral power is the magnitude squared

$$X_{PS}[m] = X_{mag}[m]^2 = X_{real}[m]^2 + X_{imag}[m]^2$$

Discrete Fourier Transform (11):

 Graphical Illustration of Phase and Magnitude (Complex Plane)



Some Properties of the 1D DFT

DFT Symmetry (1):

- Symmetry in DFT Output is Obvious!
 - Standard DFT is designed to accept complex input but most physical DFT inputs are "real" inputs
 - Non-zero real sample values
 - Imaginary values are assumed to be zero
 - With "real" input x[n] the complex DFT outputs for n = 1 to n = (M/2) - 1 are redundant with frequency output values for m > (M/2)
 - mth DFT output will have the same value as the (M-m)th DFT output
 - the phase angle of the mth output is the negative of the (M-m)th DFT output

DFT Symmetry (2):

- Symmetry in DFT Output is Obvious! (cont...)
 - What does this symmetry mean?
 - If we perform an M-point DFT on a real input sequence, we get M separate complex DFT output terms but only the first M/2 terms are independent
 - To obtain DFT of x[n], we need only compute the first M/2 values of X[m] where $0 \le m \le (M/2)-1$
 - The X[M/2] to X[M-1] DFT output terms provide no additional information about the spectrum of the real sequence x[n]

DFT Linearity (3):

- DFT is Linear
 - The DFT of the sum of two signals is equal to the sum of the transforms of each signal
 - Let x₁[n] and x₂[n] be two discrete input signals with DFT X₁[m] and X₂[n] respectively
 - Consider the sum of these two signals

$$x_{sum}[n] = x_1[n] + x_2[n]$$

 The DFT of x_{sum}[n] is 			
$X_{sum}[m] = X_1[m] + X_2[n]$			
	•		

DFT Linearity (4):

- DFT is Linear (cont...)
 - Exercise:
 - Mathematically prove this linearity property for the DFT

Inverse DFT

Inverse DFT - IDFT (1):

- Reverse the DFT Process
 - DFT transforms time-domain data into frequency domain representation
 - With inverse DFT, we transform frequency domain representation into time-domain representation
 - Perform IDFT on X[m] frequency domain values

$$x[n] = \sum_{n=0}^{M-1} X[m](\cos(2\pi nm/N) - j\sin(2\pi nm/N))$$

ELIC	629,	Fall	2005
------	------	------	------

Introduction to the Two-Dimensional Fourier Transform

Introduction (1):

- Straightforward to Extend One-Dimensional DFT to Two Dimensions
 - Two-dimensional DFT of a function (image) f(x,y)
 of size M x N is given by

$$F[u,v] = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f[x,y] e^{-j2\pi(ux/M+vy/N)}$$

Using Euler's relationship, we have the following

$$F[u,v] = \frac{1}{MN} \sum_{n=0}^{M-1} \sum_{n=0}^{M-1} f[x,y](\cos(-j2\pi(ux/M+vy/N)) + j\sin(-j2\pi(ux/M+vy/N)))$$

Introduction (2):

- Straightforward to Extend One-Dimensional DFT to Two Dimensions (cont...)
 - We can also easily extend the IDFT to twodimensions as well. Given F[u,v], IDFT is

$$f[x,y] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F[u,v] e^{-j2\pi(ux/M+vy/N)}$$

Using Euler's relationship, we have the following

$$f[x,y] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F[u,v] (\cos(-j2\pi(ux/M+vy/N)) + j\sin(-j2\pi(ux/M+vy/N)))$$

Introduction (3):

- Some Notes About 2D DFT
 - x = 0, 1, 2, ..., M-1 and y = 0, 1, 2, ..., N-1
 - Variables u and v are the transform or frequency variables and x, y are the spatial or image variables
 - As with 1D DFT, we can define the magnitude, phase and power spectrum in a similar manner
 - Magnitude

$$|F[u,v]| = \sqrt{R[u,v]^2 + I[u,v]^2}$$

Introduction (4):

- Some Notes About 2D DFT (cont...)
 - Phase φ[u,v]

$$|\phi[u,v]| = \tan^{-1}\left[\frac{I[u,v]}{R[u,v]}\right]$$

Power spectrum P[u,v]

$$P[u,v] = |F[u,v]|^2 = R[u,v]^2 + I[u,v]^2$$

 where R[u,v] and I[u,v] are the real and imaginary components of the DFT F[u,v] respectively

Introduction (5):

- Some Notes About 2D DFT (cont...)
 - Typically we multiply input image by (-1)**y (pixelby-pixel multiplication) prior to computing the DFT
 - Shifts the origin of the DFT to frequency coordinates (M/2, N/2) → the center of the M × N 2D DFT
 - $M, N \rightarrow \text{even integers}$
 - After the multiplication, the DFT becomes

$$F[u,v] = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (f[x,y]e^{-j2\pi(ux/M+vy/N)})(-1)^{x+y}$$

Introduction (6):

- Some Notes About 2D DFT (cont...)
 - Which is equal to

$$F[u,v] = \frac{1}{MN} \sum_{v=0}^{M-1} \sum_{v=0}^{N-1} (f[x,y]e^{-j2\pi(ux/M+vy/N)})(-1)^{x+y} = F(u-M/2,v-N/2)$$

- When we implement 2D DFT summations run from u=1 to M and v=1 to N.
- The center of the transform is at u = (M/2) + 1and v = (N/2) + 1

Introduction (7):

- DC Component
 - ullet DFT at the origin (0,0) in the frequency domain is equal to the average gray level (intensity) of image f(x,y)

$$F[0,0] = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)$$

Some 2D DFT Relationships (1):

- Conjugate Symmetry
 - If image f(x,y) is real, its Fourier transform is conjugate symmetric

$$F(u, v) = F^*(-u, -v)$$

- where "*" indicates standard conjugate operation on a complex number
- This implies the spectrum of the Fourier transform is symmetric

$$|F(u, v)| = |F(-u, -v)|$$

Some 2D DFT Relationships (2):

- Conjugate Symmetry (cont...)
 - Conjugate symmetry and centering property simplify the specification of circularly symmetric filters in the frequency domain
- Relationship Between Samples in the Frequency and Spatial Domains

 $\Delta u = 1/(M \Delta x)$ and $\Delta u = 1/(N \Delta y)$

 In other words → inverse relationship between spatial and frequency domain resolution

2D DFT Example (1): a 2D DFT of a "Simple" Image a 20 x 40 rectangle superimposed on black background of size 512 x 512 a Image multiplied by (-1)**y prior to computing DFT to center the spectrum in the frequency domain Fourier transform "image" Small white rectangle

2D DFT Example (2):

- Some Comments regarding the Example
 - Inverse spatial vs. frequency relationship
 - Separation of "spectrum zeros" in u direction is twice separation in v direction → 1 to 2 size ratio of rectangle in the image
 - Spectrum was processed using log transform prior to displaying to enhance gray level
 - Recall, dynamic range of DFT is huge and if we didn't process it, little detail would be evident
 - Most DFT spectra are processed with the log transform prior to displaying