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Before We Begin 

Administrative Details (1):
Lab Six Today

We will continue with Lab 6 today

Lab report required 

Requires the use of Matlab
No camera required

Ideally, you will read and look over the lab before 
coming to the lab!

Some Questions to Consider (1):
What is the gradient operator ?

What is a first-order derivative ?

What is a second-order derivative ?

What is a Sobel operator ?

How do we apply the Sobel operator ?
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The Fourier Transform

Background (1):
Fourier Domain Processing is Fundamental to 

Image Processing
To fully understand image processing at the very 
least, a basic understanding of  Fourier processing 
is needed!

Perform a Fourier transform on (spatial domain)  
image to obtain its spectral components
Perform some operation on this spectral 
representation
Perform inverse Fourier operation to get back 
the spatial representation

Background (2):
Introduced by the French mathematician 

Jean Baptiste Fourier in 1807
Published his theory in a book titled “The Theory of 
Heat” (1822)

Fourier’s theory (Fourier series) → any function 
that periodically repeats itself (infinitely) can be 
expressed as a sum of sines and/or cosines of 
different frequencies, each multiplied by different 
coefficient

Doesn’t matter how complicated the function is, 
as long as it repeats itself!

Background (3):
Graphical Illustration

=

+

+

+
“Complex” waveform

Sum of sinusoids

Background (4):
Can Even Represent Non-Periodic, Finite 

Functions as the Integral of Sines and/or 

Cosine Functions
Provided area under resulting curve of the function 
is finite

This formulation is known as a Fourier transform as 
opposed to  a Fourier series 

Even more useful when considering practical 
problems → many times functions (signals) in “real-
life” are not periodic and are finite

Background (5):
Important Characteristics of Both Fourier 

Transform and Fourier Series
Can completely recover (reconstruct) the original 
(spatial representation) function with NO loss of 
information

Can work in the Fourier Domain and then return 
back to spatial domain → many problems are 
easier solved in the Fourier domain 
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Background (6):
The Functions (Images) we are Dealing with 

Are Finite in Duration
We are therefore primarily interested and will be 
dealing with, is the Fourier transform 

Many Image Enhancement Techniques in the 

Fourier Domain
Extremely useful

Can be easier to understand what exactly is 
happening and how the operations work

The One-Dimensional
Fourier Transform

Introduction (1):
Originally, Fourier Transform was 
Formulated with Continuous Time Signals

We are dealing with sampled images
Finite intensity values and finite in duration 
In other words, we are dealing with a discrete 
signal → remember, an image itself is a signal as in 
your DSP course, except we are now dealing with a 
two-dimensional signal as opposed to a one-
dimensional signal you are familiar with
Discrete Fourier Transform (DFT) introduced to 
handle discrete signals

Discrete Fourier Transform (1):
One of the Most Common and Powerful 

Procedures Encountered in the Field of 

Digital Signal Processing in General
Enables us to analyze, manipulate and synthesize 
signals in ways not possible with continuous (analog) 
signal processing

Used in every field of engineering

A solid understanding of the DFT is extremely 
important!

Discrete Fourier Transform (2):
What is the Discrete Fourier Transform ?

A mathematical procedure used to determine the 
frequency (or harmonic) content of a discrete signal

Remember → discrete signal obtained by 
periodically sampling a continuous time signal in 
the time domain

Based on the Continuous Fourier Transform (CFT), 
denoted by X(f) (or F(u) )

∫
∞

∞−

−= dtetxfX ftj π2)()(

Discrete Fourier Transform (3):

Lets Analyze This Expression:
f → frequency (spectral component)
x(t) → continuous time domain signal
e-j2πft → a sinusoid (sine wave) of frequency f
In words → Fourier Transform of frequency 
component f is a correlation of the infinite input 
signal at each time step with a sine wave of 
frequency f → X(f) tells us “how much” of the sine 
wave of frequency f the signal contains

∫
∞

∞−

−= dtetxfX ftj π2)()(
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Discrete Fourier Transform (4):
Discrete Fourier Transform (DFT) 
Mathematically
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Using Euler’s Relationship e-jθ = cos(θ) – jsin(θ) we 
obtain:
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Discrete Fourier Transform (5):

X[m] → mth DFT output e.g., X[0], X[1] … X[M-1]

m → index of the DFT output in frequency domain 
(m = 0, 1, 2, … M-1)

x[n] → sequence of input (discrete) samples     
(x[0], x[1], x[2] … x[M-1])

n → (discrete) time domain index of input samples 

j = sqrt(-1) (remember, complex numbers!)

M → number of samples (same for input and DFT)
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Discrete Fourier Transform (6):
Some Notes Regarding the DFT

Indices for input samples and DFT output samples 
always go from 0 to M-1

With M input time domain samples, the DFT 
determines the spectral content of the input at 
M equally spaced frequency points
M is an important parameter and determines

1. How many input samples are needed
2. Resolution of the frequency domain results
3. Amount of processing time required to 

calculate an M-point DFT

Discrete Fourier Transform (7):
Some Notes Regarding the DFT (cont…)

In words:
Each X[m] DFT output is the sum of a point for 
point product between an input sequence of 
input values and a complex sinusoid of the form 
cos(θ) – jsin(θ) 
Exact frequencies of the of the different 
sinusoids depend on sample rate fs and number 
of samples M 
Fundamental frequency of the sinusoids is fs /M 
and all other X[m] analysis frequencies are 
integer multiples of the fundamental!

Discrete Fourier Transform (8):
Some Notes Regarding the DFT (cont…)

The M separate DFT analysis frequencies are

M
mfmf s

analysis =)(

So,  X[0] gives us magnitude of an 0Hz  (“DC”) 
component contained in the signal, X[1] gives us 
magnitude of the fundamental component, X[2] 
gives us magnitude of 2 x fundamental component 
contained in signal etc.

Finally, keep in mind, we are dealing with complex 
sinusoids → magnitude and phase!

Discrete Fourier Transform (9):
Determining the Magnitude and Phase 

Contained in each X[m] Term
We can represent an arbitrary DFT output value 
X[m] by its real and imaginary parts

][][][][ mXmjXmXmX magimagreal =+= at angle of Xθ[m]

The magnitude of X[m] is
22 ][][][][ mXmXmXmX imagrealmag +==
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Discrete Fourier Transform (10):
Determining the Magnitude and Phase 

Contained in each X[m] Term (cont…)
The phase angle of X[m], Xθ[m] is









= −

Θ ][
][

tan][ 1

mX
mX

mX
real

imag

The power of X[m], known as the power spectrum or 
spectral power is the magnitude squared

222 ][][][][ mXmXmXmX imagrealmagPS +==

Discrete Fourier Transform (11):
Graphical Illustration of Phase and 

Magnitude (Complex Plane)

Real axis

Imaginary 
axis (j)

Xreal[m]

Ximag[m]

This point represents the 
complex number 

X[m] = Xreal[m] + Ximag[m]

θ

Xmag[m]

Some Properties of the
1D DFT  

DFT Symmetry (1):
Symmetry in DFT Output is Obvious!

Standard DFT is designed to accept complex input 
but most physical DFT inputs are “real” inputs 

Non-zero real sample values
Imaginary values are assumed to be zero

With “real” input x[n] the complex DFT outputs for 
n = 1 to n = (M/2) – 1 are redundant with frequency 
output values for m > (M/2)

mth DFT output will have the same value as the 
(M-m)th DFT output
the phase angle of the mth output is the 
negative of the (M-m)th DFT output

DFT Symmetry (2):
Symmetry in DFT Output is Obvious! (cont…)

What does this symmetry mean?
If we perform an M-point DFT on a real input 
sequence, we get M separate complex DFT 
output terms but only the first M/2 terms are 
independent 
To obtain DFT of x[n], we need only compute the 
first M/2 values of X[m] where 0 ≤ m ≤ (M/2)-1
The X[M/2] to X[M-1] DFT output terms provide 
no additional information about the spectrum of 
the real sequence x[n]

DFT Linearity (3):
DFT is Linear

The DFT of the sum of two signals is equal to the 
sum of the transforms of each signal

Let x1[n] and x2[n] be two discrete input signals 
with DFT X1[m] and X2[n] respectively 
Consider the sum of these two signals

xsum[n] = x1[n] + x2[n]

The DFT of xsum[n] is 

Xsum[m] = X1[m] + X2[n]
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DFT Linearity (4):
DFT is Linear (cont…)

Exercise: 
Mathematically prove this linearity property for 
the DFT

Inverse DFT  

Inverse DFT – IDFT (1):
Reverse the DFT Process

DFT transforms time-domain data into frequency 
domain representation

With inverse DFT, we transform frequency domain 
representation into time-domain representation

Perform IDFT on X[m] frequency domain values
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Introduction to the Two-
Dimensional Fourier 

Transform

Introduction (1):
Straightforward to Extend One-Dimensional 

DFT to Two Dimensions
Two-dimensional DFT of a function (image) f(x,y) 
of size M x N is given by
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Using Euler’s relationship, we have the following
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Introduction (2):
Straightforward to Extend One-Dimensional 

DFT to Two Dimensions (cont…)
We can also easily extend the IDFT to two-
dimensions as well.  Given F[u,v], IDFT is
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Using Euler’s relationship, we have the following
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Introduction (3):
Some Notes About 2D DFT

x = 0, 1, 2, …, M-1 and y =0, 1, 2, …, N-1

Variables u and v are the transform or frequency
variables and x, y are the spatial or image variables

As with 1D DFT, we can define the magnitude, 
phase and power spectrum in a similar manner

Magnitude

22 ],[],[],[ vuIvuRvuF +=

Introduction (4):
Some Notes About 2D DFT (cont…)

Phase φ[u,v] 









= −

],[
],[tan],[ 1

vuR
vuIvuφ

Power spectrum P[u,v] 

222 ],[],[],[],[ vuIvuRvuFvuP +==

where R[u,v] and I[u,v] are the real and imaginary 
components of the DFT F[u,v] respectively 

Introduction (5):
Some Notes About 2D DFT (cont…)

Typically we multiply input image by (-1)x+y (pixel-
by-pixel multiplication) prior to computing the DFT

Shifts the origin of the DFT to frequency 
coordinates (M/2, N/2) → the center of the   
M x N 2D DFT 
M, N → even integers 

After the multiplication, the DFT becomes 
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Introduction (6):
Some Notes About 2D DFT (cont…)

Which is equal to 
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When we implement 2D DFT summations run from 
u = 1 to M and v = 1 to N.  

The center of the transform is at u = (M/2) + 1 
and v = (N/2) +1 

Introduction (7):
DC Component 

DFT at the origin (0,0) in the frequency domain is 
equal to the average gray level (intensity) of image 
f(x,y)
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Some 2D DFT Relationships (1):
Conjugate Symmetry 

If image f(x,y) is real, its Fourier transform is 
conjugate symmetric

F(u, v) = F*(-u, -v)

where “*” indicates standard conjugate 
operation on a complex number

This implies the spectrum of the Fourier 
transform is symmetric

|F(u, v)| = |F(-u, -v)|
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Some 2D DFT Relationships (2):
Conjugate Symmetry (cont…)

Conjugate symmetry and centering property 
simplify the specification of circularly symmetric 
filters in the frequency domain

Relationship Between Samples in the 

Frequency and Spatial Domains

∆u = 1/(M ∆x)  and ∆u = 1/(N ∆y) 

In other words → inverse relationship between 
spatial and frequency domain resolution

2D DFT Example (1):
2D DFT of a “Simple” Image

20 x 40 rectangle superimposed on black 
background of size 512 x 512 

Image multiplied by (-1)x+y prior to computing DFT 
to center the spectrum in the frequency domain

Original 
image

Small white 
rectangle

Fourier 
transform 

“image”

2D DFT Example (2):
Some Comments regarding the Example

Inverse spatial vs. frequency relationship
Separation of “spectrum zeros” in u direction is 
twice separation in v direction → 1 to 2 size 
ratio of rectangle in the image

Spectrum was processed using log transform prior 
to displaying to enhance gray level

Recall, dynamic range of DFT is huge and if we 
didn’t process it, little detail would be evident
Most DFT spectra are processed with the log 
transform prior to displaying


