

ELIC 629

Digital Image Processing

Winter 2005

Digital Image Fundamentals: Visual Perception & the EM Spectrum, Image Acquisition, Sampling & Quantization

Bill Kapralos

Tuesday, January 17 2006

ELIC 629, Winter 2006, Bill Kapralo

O		. /1\
Over	'VIEW	(1)

- Review
 - Some questions to consider
- Elements of Visual Perception
 - Structure of the human eye
 - Image formation in the eye
 - a Brightness adaptation and discrimination
- Light and the Electromagnetic Spectrum
 - Brief review
 - Greater details

Overview (2):

- Image Sensing and Acquisition
 - Single sensor acquisition
 - Sensor strip acquisition
 - Sensor array acquisition
 - A simple image formation model
- Image Sampling and Quantization
 - Basic concepts
 - Digital image representation
 - Spatial and gray-level resolution
 - Aliasing and Moire patterns

ELIC 629, Winter 2006
Bill Kapralos

Administrative Details (1):

- Miscellaneous Notes
 - No access to the lab and its equipment other than during our regularly scheduled lab hours
 - Even if lab is open, no one else can provide you access to the camera equipment
 - Shouldn't be a problem completing labs during your lab hours
 - Keep in mind that you are responsible for book material as well
 - I will be closely following the material in the book and will provide you with the relevant sections

Review

Some Questions to Consider (1):

- What is a digital image?
- What is a gray level?
- What is digital image processing?
- What are some uses of digital image processing?
- How is the field of image processing categorized?
- What is the electromagnetic (EM) spectrum?
- Can images be generated from non-EM sources?
- What are the two broad categories of digital image processing?

ΕI	IC	629	Winter	2006

Elements of Visual Perception

Introduction (1):

- Motivation
 - Understanding the human visual system is important for digital image processing
 - Although image processing is built upon a strong mathematical/probabilistic foundation, there is also a large subjective component
 - The choice of choosing one technique over another can be subjective
 - My notion of a "good" image may differ from yours

Structure of the	Human Eye (1):	Cornea
Cross Section of	Iris	ris
the Human Eye	Atterior Number	Gliary muscle
Nearly a sphere	Lons	
a ~ 20mm diameter	Retina	ibers
Sclera	Visual av Väresus Reitras	
		Fovea

Structure of the Human Eye (2):

- Major "Components" of the Eye
 - Cornea
 - Tough, transparent tissue that covers the front surface of the eye
 - Sclera
 - Opaque membrane enclosing remainder of eye
 - a Charaid
 - · Lies directly below the sclera
 - Contains a network of blood vessels which provide nutrition to the eye

Structure of the Human Eye (3):

- Choroid (cont...)
 - Even minor injuries can lead to severe eye damage
 - Helps reduce the amount of extraneous light entering the eye
 - At the front, choroid is divided into two parts:
 ciliary body and iris diaphragm
- Iris diaphragm
 - Contracts or expands to control the amount of light entering the eye
 - ullet Dim light o expands to let more light in
 - Bright light or object close-by → contracts

Structure of the Human Eye (4):

- Lens
 - · Composed of several layers of fibrous cells
 - Suspended by fibers that attach to the ciliary body
 - Contains 60-70% water, 6% fat
 - \bullet Colored by a slight yellow coloration which increases with age \rightarrow cataracts
 - Absorbs about 8% of visible light spectrum (higher absorption at smaller wavelengths)
 - Absorbs infrared and ultraviolet energy considerably

ELIC	629,	Winter	2006

Structure of the Human Eye (5):

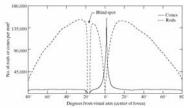
- Retina
 - Inner-most membrane of the eye
 - When eye is properly focused, light from object outside eye is focused on to retina
 - Discrete light receptors are distributed over surface of the retina → cones and rods
- Cones
 - 6 7 million in each eye
 - Located primarily in central portion of the retina known as the fovea
 - \bullet Each cone is connected to its own nerve end \rightarrow allows for high resolution/high detail

Structure of the Human Eye (6):

- Cones (cont...)
 - High color sensitivity
 - Eyeball is rotated until the "image" of the object of interest (the object the person is looking at) falls on the fovea
 - Known as photopic vision or bright light vision
- Rods
 - 75 150 million distributed over retinal surface
 - Several rods connected to single nerve fiber
 - \bullet Less detail \to provide general overview of the field of view

Structure of the Human Eye (7):

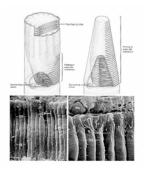
- Rods (cont...)
 - No color sensitivity
 - Sensitive to low levels of illumination
 - Known as scotopic vision or dim-light vision


Recap of Cones and Rods

- ullet Cones ightarrow color sensitive, high detail, less of them, daylight
- \bullet Rods \to non-color sensitivity, less detail, more of them, night time

EL	IC	620	Winter	2006

Structure of the Human Eye (8):


Distribution of Rods and Cones in Retina

- Receptor density measured in degrees from fovea
 - Cones most dense in center area of retina
 - Rods increase in density from center to ~20° then decrease towards periphery

Structure of the Human Eye (9):

Rods and Cones in "Real Life"

Structure of the Human Eye (10):

- Blind Spot
 - Absence of receptors in a small portion of the retina
 - Contains the optic nerve; all nerves from the eye receptors exit at the optic nerve
 - ullet No vision in this area o cannot respond to any light falling on this area!
 - But why don't we notice this "blind spot" shouldn't it be evident to us?
 - We have two eyes → the blind spot of one eye corresponds to non-blind spot of other eye
 - See web site for example of blind spot

Image Formation in the Eye (1):

- Eye is Flexible
 - This actually is a big deal!
 - Primary difference between the eye and regular camera/optical lens
 - Controls the shape of the lens via muscles
 - Allows for focusing of objects close by and distant
 - Distant objects → lens is flattened
 - Close-by objects → lens is "thicker"

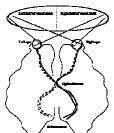
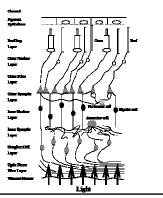

Image Formation in the Eye (2): Graphical Overview Real world object Sye Focal length Inverted image of object on retina

Image Formation in the Eye (3):

- Focal Length
 - Distance between center of lens and the retina
 - Varies between 14mm and 17mm as refractive power of lens increases from minimum to maximum
 - \bullet Focusing on objects > ~3m \rightarrow lowest refractive power
 - \bullet Focusing on objects close-by \rightarrow greatest refractive power
 - Simple geometry can be used to calculate the size of retinal image


Image Formation in the Eye (4):

- Image of Object on Retina is Inverted!
 - We are not aware of this however because the inversion is handled by the brain!
- "Crossing" of Visual Image Processing
 - Left (right) visual field processed by right (left) portion of brain

Image Formation in the Eye (5):

Overview

Brightness Adaptation & Discrimination (1):

- Digital Images are Displayed as a Discrete
 Set of Intensities
 - Eye's ability to discriminate between different intensity levels is important for image processing!
- Range of Intensities to Which Eye is Sensitive too is Huge!
 - ullet Order of 10^{10} from scotopic threshold to glare limit

Brightness Adaptation & Discrimination (2): Brightness and & Light Intensity (cont...) Range of intensities to which visual system can respond Scotopic Photopic Photopic Scotopic Scotopic Scotopic Scotopic Protopic Photopic

Brightness Adaptation & Discrimination (3):

- Brightness Adaptation
 - Visual system cannot operate over such a large range simultaneously
 - Total range of distinct intensity levels it can discriminate is small!
 - Brightness adaptation
 - Changes in the overall sensitivity of the visual system to allow for the large range of intensities
 - Brightness adaptation level
 - \bullet The current sensitivity level of the visual system

Discriminating Between Changes in Light Intensity Determined by: Subject views flat uniformly illuminated area

Brightness Adaptation & Discrimination (4):

- Subject views flat uniformly illuminated area illuminated from behind by light source
- Increment of illumination ΔI in the form of short duration pulse appears

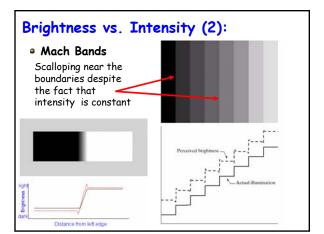
Uniformly	$_{f}I + \Delta I$
illuminated area	\mathcal{A}
Increment of	
illumination	I

Brightness Adaptation & Discrimination (5):

- Discriminating Between Changes in Light
 Intensity (cont...)
 - $\mbox{\tt @ If }\Delta\mbox{\tt I}$ isn't bright enough, subject says "no" indicating no perceivable change
 - As ΔI is increased, subject will eventually say "yes" indicating a perceivable change
 - $\mbox{\ \ }$ When $\Delta \mbox{\ \ } \mbox{\ \ }$ is large enough, subject will say "yes" always
 - Weber ratio
 - The quantity $\Delta I_c/I$ where ΔI_c is the increment of illumination discriminable 50% of the time

Brightness Adaptation & Discrimination (6):

- Weber ratio (cont...)
 - Large Weber ratio → indicates large percentage change in intensity required to discriminate change
 - Small Weber ratio → indicates small percentage change in intensity required to discriminate change


Brightness Adaptation & Discrimination (7):

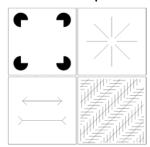
- Based on these Types of Experiments, we can Distinguish One-Two Dozen Intensity Levels
 - e.g., in a typical monochrome image, this is the number of different intensities we can "see"
 - This of course doesn't mean we can represent an image by such a small number of intensities!
 - As the eye scans an image, average intensity level background changes
 - Allows different set of incremental changes to be detected at each new adaptation level

ELIC 62	29, W	inter :	2006

Brightness vs. Intensity (1):

- Two Phenomena Demonstrate Brightness isn't
 - a Simple Function of Intensity
 - Mach Bands
 - Visual system tends to overshoot or undershoot around the boundary of regions of different intensities
 - Simultaneous contrast
 - A region's perceived brightness doesn't depend on its intensity only but may also be affected by the intensity of its surroundings

Brightness vs. Intensity (3):

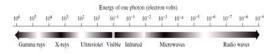

Simultaneous Contrast

• Intensity of all inner squares is the same but as the background gets lighter, inner square appears darker!

Optical Illusions (1):

Eye Fills in Non-Existing Info. or Wrongly
 Perceives Geometrical Properties of Objects

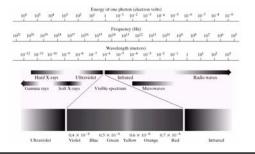
The Electromagnetic Spectrum


Electromagnetic Spectrum-Review(1):

- Electromagnetic Waves Review
 - Conceptualized as:
 - \blacksquare Wave theory \to propagating sinusoidal waves of varying wavelength or

 - There is also the dual theory in which both forms are present! We won't worry about this !!!

Electromagnetic Spectrum-Review (2):


Grouping of Spectral Bands of EM Spectrum
 According to Energy per Photon we Obtain:

- ullet Highest energy o gamma rays
- ullet Lowest energy ightarrow radio waves
- No "smooth transition" between bands of the EM spectrum

Electromagnetic Spectrum (1):

- Close-up View of the Visible Portion
 - Small portion of the entire spectrum

Electromagnetic Spectrum (2):

- Visible Portion (Light) Colors
 - Wavelength ranges from
 - 0.43µm (violet higher energy)
 - 0.79μm (red lower energy)
 - Color spectrum divided into six broad regions
 - Violet, blue, green, yellow, orange & red
 - Remember → continuous (e.g., no "clear-cut" boundary between colors in the spectrum!)

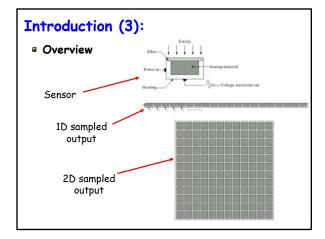
006

Electromagnetic Spectrum (3):

- Visible Portion (Light) Colors (cont...)
 - When looking at an object (scene etc.) the colors we actually "see" arise from:
 - The light reflected off of an object
 - A pure blue object reflects blue light while absorbing all other colors completely (e.g., an object's color is determined by its reflection and absorption characteristics)
 - ullet White light o all colors reflected equally
 - Achromatic or monochromatic light → no color, void of any color e.g., gray level: black to white and shades of gray in between

Electromagnetic Spectrum (4

- Some Definitions
 - Radiance
 - Total energy flowing from source (Watts)
 - Luminance
 - Amount of energy the observer perceives from a light source (lumens)
 - Not necessarily all energy emitted is perceived!!
 - Brightness
 - Subjective descriptor of light perception

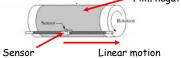

Image Sensing and Acquisition	
IC 629, Winter 2006 Il Kapralos	

Introduction (1):

- Intensity of an Image Arises from Two Potential Sources
 - Emitted from an source (e.g., energy emitted from the sun or a light)
 - Reflected from an object which itself does not necessarily emit energy
 - An object can in some cases serve as a source and reflector at the same time!
 - Keep in mind, a source does not have to produce energy restricted to the visual portion of the EM spectrum

Introduction (2):

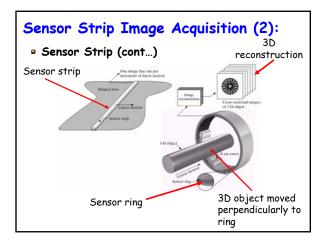
- It is this Energy that we Collect ("Sample")
 and Construct an Image From
 - Sampling overview
 - Incoming energy is transformed into a voltage by the sensing device (camera, etc...)
 - Output of sensing device is the response of the sensor(s)
 - Digital quantity is obtained by digitizing the sensor's response
 - We will now elaborate on this...



Single Sensor Image Acquisition (1):

- One Sensor to Sample ("Sense") Energy and Construct Image
 - Very simple yet very restrictive!
 - Common example is the photodiode
 - Output voltage is proportional to incident light
 - But how do we construct a 2D image using a single sensor when an image is a 2D construct of spatial locations x,y?
 - Must "move" the sensor with respect to both the x and y directions

Single Sensor Image Acquisition (2):


Example of Single Sensor Acquisition Device
 Film negative

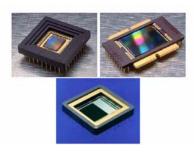
- Film negative mounted on a drum which rotates allowing for displacement in one direction
- Single sensor mounted such that it can move in perpendicular direction
- Allows for high resolution imaging, very inexpensive but too slow!!!

Sensor Strip Image Acquisition (1):

- Sensor Strip
 - Rather than using a single sensor, multiple sensors arranged in a line ("strip") are used to image scene
 - Provides one dimensional imaging capability
 - Motion in the other direction allows for imaging in the other direction
 - Typical in flat-bed scanners
 - Air-borne imaging applications where airplane flies over scene to be imaged
 - Can also be arranged in a "ring" as done in medical imaging e.g., CAT scans to give 3D view

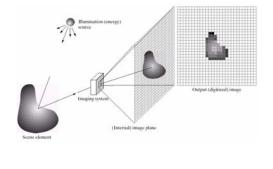
Sensor Array Image Acquisition (1):

- Sensors Arranged in a 2D Array
 - Can now sample in both dimensions
 - No movement of sensor needed to obtain image!
 - More complex and more expensive but no motion!
 - Common arrangement, especially with the current state of technology
 - Sensor arrays are small and are fairly inexpensive
 - Just about all digital cameras/video recorders use a 2D array of sensors → CCD (charged coupled device) with typically 4000 x 4000 elements or more


Sensor Array Image Acquisition (2):

- Charged Coupled Devices (CCDs)
 - Invented in 1969 at Bell Labs by George Smith and Willard Boyle
 - Response of each sensor is proportional to the integral of the energy projected onto the surface of the sensor
 - Noise can be reduced by letting the sensor integrate the input energy over some period of time
 - CCDs for various types of energy acquisition not only light!

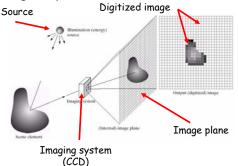
ELIC	629.	Winter	2006


Sensor Array Image Acquisition (3):

Example of Typical CCDs

Sensor Array Image Acquisition (4):

Image Acquisition with a CCD



Sensor Array Image Acquisition (5):

- Image Acquisition with a CCD (cont...)
 - First function of imaging system is to focus light (energy) onto an image plane - an imaginary plane on which an object is projected
 - If the energy is light, front end of imaging system is a lens and projects the scene being imaged onto the lens focal plane
 - Sensor array is coincident with focal plane & produces output proportional to integral of light incident onto sensor
 - Sensor array output is digitized

Sensor Array Image Acquisition (6):

Image Acquisition with a CCD (cont...)

An Image Formation Model (1):

- Image Generated by Physical Process
 - Intensity values at spatial position f(x,y) proportional to the energy radiated by the physical source and

$$0 \le f(x,y) \le \infty$$

- In other words, intensity values are finite
- Intensity f(x,y) Characterized by Two Components
 - Amount of source illumination incident on the scene
 - Amount of illumination being reflected by objects in the scene

An Image Formation Model (2):

Both components can be combined to give

$$f(x,y) = i(x,y) \times r(x,y)$$

- where

 - \rightarrow 0 \le r(x,y) \le 1 denotes the energy that is reflected off of objects in the scene

An Image Formation Model (3):

- Note:
 - When dealing with gray level images, the gray level of a particular pixel is denoted by "\ell = f(x,y)" and

 $L_{min} \leq \ell \leq L_{max}$

- \bullet The interval $[L_{min},L_{max}]$ is known as the gray scale
 - Common to shift this interval to the interval [0, L-1] such that, on the gray scale
 - $\bullet \ell = 0 \rightarrow black$
 - ℓ = L 1 \rightarrow white
 - All intermediate values are shades of gray

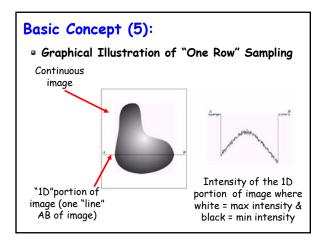
Image Sampling and Quantization

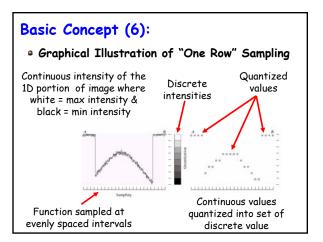
Basic Concept (1):

- Goal
 - Generate digital images from data that has been "sensed" (sampled) by some type of sensor
 - Output of the majority of sensors is some type of continuous voltage waveform but we CANNOT represent a continuous signal on a computer!
 - This continuous voltage waveform data must be converted into digital form
 - The process of digitizing the data involves two processes → sampling and quantization

Basic Concept (2):

- Sampling in 2D
 - Same as sampling in 1D but now we sample this "extra" dimension
 - To simplify problem
 - \bullet Sample this 2D function one "row" at a time \to each "row" is a 1D function and we reduce the problem of 2D sampling to repeated 1D sampling
 - Take ("sample") the values of the continuous intensity function representing this row at equally spaced intervals
 - Sampling period → time between successive samples

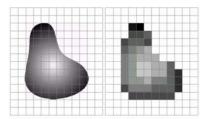

Basic Concept


- Quantization -Intensity Value
 - Although funct spaced interval for the "contin
 - Can be of an the 1010 inte
 - Clearly this computer/m
 - Need to "ma (typically) m

Basic Concept

- Quantization (
 - Quantization continuous valu can be represe
 - Example
 - Intensity va include any v
 - Discrete set
 - Mapping → c continuous =

(3):	
Converting the "Continuous"	
es to Discrete Values	
ion has been "sampled" at evenly	
s (e.g., discrete), we must still account uous" intensity values	-
y value (e.g., theoretically any one of	
nsity values we can perceive!)	
is impossible to represent using a achine	
p" these "continuous" values to a	
uch smaller discrete set of values	
(4):	
(4):	
cont)	
·	
refers to this mapping of the	
refers to this mapping of the es to a discrete set of values which	
refers to this mapping of the es to a discrete set of values which	
es to a discrete set of values which nted on a computer/machine	
refers to this mapping of the les to a discrete set of values which nted on a computer/machine lues which range from 1.0 to 10.0 and value in-between (e.g., 4.256)	
refers to this mapping of the less to a discrete set of values which nted on a computer/machine lues which range from 1.0 to 10.0 and value in-between (e.g., 4.256) to f values \rightarrow 1,2,3,4,5,6,7,8,9,10	
verefers to this mapping of the less to a discrete set of values which inted on a computer/machine lues which range from 1.0 to 10.0 and value in-between (e.g., 4.256) or of values \rightarrow 1,2,3,4,5,6,7,8,9,10 discerete = round(continuous) (e.g., if	
refers to this mapping of the less to a discrete set of values which nted on a computer/machine llues which range from 1.0 to 10.0 and value in-between (e.g., 4.256) to f values \rightarrow 1,2,3,4,5,6,7,8,9,10 discerete = round(continuous) (e.g., if 4.55, then quantized to 5)	
refers to this mapping of the less to a discrete set of values which inted on a computer/machine lues which range from 1.0 to 10.0 and value in-between (e.g., 4.256) to f values \rightarrow 1,2,3,4,5,6,7,8,9,10 discerete = round(continuous) (e.g., if	
refers to this mapping of the less to a discrete set of values which inted on a computer/machine lues which range from 1.0 to 10.0 and value in-between (e.g., 4.256) to f values \rightarrow 1,2,3,4,5,6,7,8,9,10 discerete = round(continuous) (e.g., if	



Basic Concept (7):

- Sampling and Quantization Additional Notes
 - Sampling is typically determined by the sensor arrangement used to generate the image
 - Don't always have the freedom to choose our own sampling interval! e.g., a camera's CCD automatically determines our sampling interval and hence resolution
 - Quantization range is also determined by our machine/computer
 - Remember Nyquist's Theorem

Basic Concept (8):

Sensor Array Determines Sampling Interval

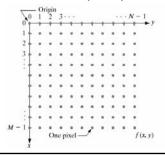


Image Representation (1):

- Sampling and Quantization Result in a Discrete 2D Function
 - ${\color{black} a}$ Recall from first lecture ${\rightarrow}$ M x N matrix
 - Spatial coordinates x,y are indices into this matrix
 - ullet x ightarrow denotes row index ranging from 0 to M 1
 - ${ullet} {ullet} {$
 - Examples:
 - $(0,0) \rightarrow \text{first row, first column (known as the origin)}$
 - $(0,1) \rightarrow \text{first row, second column}$
 - $(M-1, N-1) \rightarrow last row, last column$

Image Representation (2):

 Sampling and Quantization Result in a Discrete 2D Function (cont...)

Image Representation (3):

- M x N Digital Image in Matrix Form
 - Each element of the matrix is known as a picture element, pel or most commonly pixel

$$f(x, y) = \begin{pmatrix} f(0, 0) & f(0, 1) & \cdots & f(0, N-1) \\ f(1, 0) & f(1, 1) & & f(1, N-1) \\ \vdots & & \ddots & \vdots \\ f(M-1, 0) & f(M-1, 1) & \cdots & f(M-1, N-1) \end{pmatrix}$$

Image Representation (4):

- Choosing the Range for the Sampling Range
 Quantization Values
 - Row and column dimensions (M, N)
 - Must be positive integers
 - Typically begin at "0" and run to M-1
 - Typically a factor of 2 due to processing, storage and hardware