

Tuesday, March 7 2006

Overview (1):

Before We Begin

- Administrative details
- ${\tt a}$ Review ${\to}$ some questions to consider

Image Edges

- Introduction
- Importance of edge detection
- Modeling an edge

Overview (2):

Introduction to Sharpening Filters

- First order derivatives the gradient
- Second order derivative

First Order Derivatives - The Gradient

- Introduction
- Properties
- Second Order Derivatives The Laplacian
 - Introduction
 - Defining the Laplacian operator

Before We Begin

Administrative Details (1):

Lab 6 Today

- This lab may be spread across two days
- There is a report required for this lab but no lab assignment
 - \bullet Due Mar. 21 2006 \rightarrow if one week to complete
 - $\scriptstyle \bullet$ Due Mar. 28 2006 \rightarrow if two weeks to complete

Mid-Term Exams

- Will be returned during the lab period
- We will discuss the solutions at a latter time

Some Questions to Consider (1):

- What is spatial filtering?
- What is a smoothing spatial filter ?
- What is an averaging filter ?
- What is a weighted averaging filter ?
- What is a sharpening filter ?

Image Edges

Introduction (1):

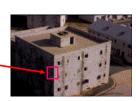
- What is an Edge ?
 - Intuitively → a border between two regions, where each region has (approximately) uniform brightness (gray level)
 - In an image edges typically arise from
 - 1. Occluding contours in an image
 - Two image regions correspond to two different surfaces
 - 2. Abrupt changes in surface orientation
 - 3. Discontinuities in surface reflectance

Introduction (2):

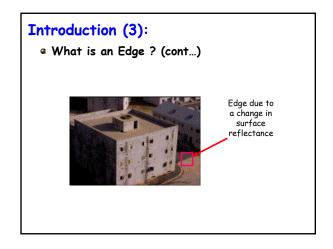
What is an Edge ? (cont...)

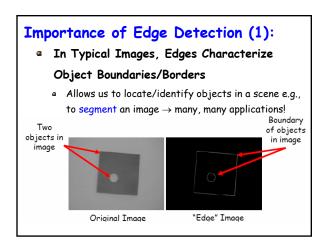
Edge due to an occluding contour

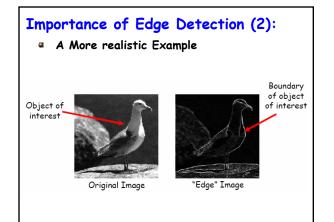
Edge due to an abrupt change in surface orientation

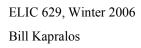


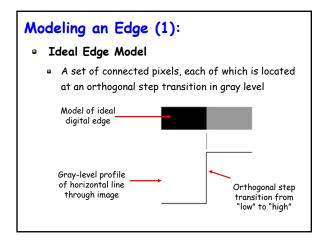
ELIC 629, Winter 2006 Bill Kapralos











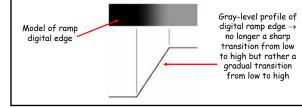
Modeling an Edge (2):

In Practice, Ideal Edges Don't Exist!

- Sampling and the fact that sampling acquisition equipment etc. is far from perfect leads to edges that are blurred
- Changing illumination (lighting conditions) will cause changes to edges & all parts of an image in general
 - Changing lighting conditions are actually a HUGE problem for vision/image processing tasks → many algorithms will not generalize across different lighting conditions
 - Color constancy → a big field in computer vision but still an un-solved problem!

Modeling an Edge (3):

- The slope of the ramp is inversely proportional to the degree of blurring in the edge
- $\bullet~$ Updated definition \rightarrow region of image in which the gray-level changes significantly over short distance



ELIC 629, Winter 2006 Bill Kapralos

In Practice, Ideal Edges Dont Exist! (cont.)

- Edge is no longer a one-pixel thick path
 - An edge point is now any point contained in the ramp and an edge would be a set of such points which are connected
 - Thickness of edge depends on length of ramp which is determined by its slope which itself is determined by the amount of blurring
 - Blurred edges are typically thicker e.g., the greater the blurring \rightarrow the thicker the edge

Sharpening Filters (Review)

Foundation (5):

First Order Derivative in Greater Detail

 Basic definition of a first order 1D function f(x) is the difference

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$
 $\frac{\partial f}{\partial y} = f(y+1) - f(y)$

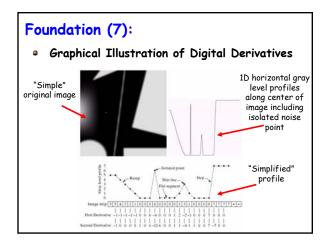
■ Remember → above definition is of one variable (x) only since images are a function of two variables x,y e.g., f(x,y) we will be dealing with derivatives along both spatial axis "separately" hence the use of "partial derivative"

Foundation (6):

- Second Order Derivative in Greater Detail
 - Basic definition of a first order 1D function f(x) is the difference

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$
$$\frac{\partial^2 f}{\partial y^2} = f(y+1) + f(y-1) - 2f(y)$$

 Once again, remember, above definition is for one variable only whereas in digital images we are dealing with two variables, x,y



Foundation (8):

- Graphical Illustration Explained
 - Traversing profile from left to right
 - First order derivative is non-zero along entire ramp but second order derivative is non-zero only at onset and end of ramp
 - Since edges in image have similar profile, we can conclude first order derivative produces "thick" edges while second order derivatives produces "finer" edges
 - A second order derivative enhances much more finer detail than first order derivative (but also enhances noise as well!)

Foundation (9):

- Graphical Illustration Explained (cont...)
 - To summarize
 - 1. First order derivatives generate thicker edges in an image
 - Second order derivatives have stronger response to fine detail e.g., thin lines and isolated points (noise as well)
 - 3. First order derivatives have stronger response to gray level step
 - 4. Second order derivatives produce double response at step changes in gray level

Foundation (10):

- Graphical Illustration Explained (cont...)
 - To summarize (cont...)
 - Generally, second order derivatives are better for image enhancement as opposed to first order derivatives since they are able to enhance such fine detail

First Order Derivatives The Gradient

Introduction (1):

Gradient Defined

- Gradient is a measure of change in a function
- An image can be considered to be an "array" of samples of some continuous function of intensity
 - Significant changes in gray levels in image can thus be detected using discrete approximation of gradient
 - Edge detection \rightarrow detecting significant local changes in an image
- Two-dimensional equivalent of the first derivative

Introduction (2):

- Gradient Defined (cont...)
 - For function f(x,y) gradient of f at coordinates
 (x,y) is defined as a two-dimensional column vector

$$G[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient Properties (1):

Two Important Properties of Gradient

- Vector G[f(x,y)] points in direction of maximum increase of function f(x,y)
- Magnitude of gradient equals maximum rate of increase of f(x,γ) per unit distance in direction G. Magnitude given as

$$mag(G[f(x,y)]) = \sqrt{G_x^2 + G_y^2}$$
$$= \sqrt{\left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]} \qquad \theta = \tan^{-1}(y/x)$$

Gradient Properties (2):

Properties of the Gradient

- Components of gradient vector are linear
- Magnitude of gradient vector is not linear given squaring and square root operations
- Partial derivates of gradient vector are not isotropic (e.g., not rotation invariant)
- Magnitude of gradient is isotropic
- Often, although incorrect, we refer to the magnitude of the gradient as the gradient itself

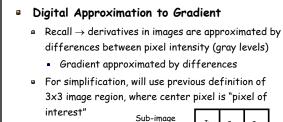
Gradient Properties (3):

Properties of the Gradient (cont...)

- Implementing the gradient magnitude equation for an entire image is very computationally expensive and certainly not a trivial matter!
 - Approximate gradient mag. using absolute values

 $mag(G[f(x,y)]) = |G_x| + |G_y|$

- Above equation is easier to compute and preserves relative changes in gray levels
- Isotropic property generally lost → as with Laplacian preserved for limited number of rotational increments, depending on mask



Approximating the Gradient (1):

region Recall, z₅ denotes f(x,y), z₁ denotes f(x-1,y-1), etc.

el is "pixel of				
z 1	z ₂	z ₃		
4	z ₅	z ₆		
z ₇	z ₈	z ₉		

Approximating the Gradient (2):

Digital Approximation to Gradient (cont...)

 Simplest approximation to first order derivative satisfying previously stated conditions is

 $G_x = (z_8 - z_5)$ and $G_y = (z_6 - z_5)$

 Other definitions available including one proposed by Roberts in 1965, uses "cross differences" and known as the Roberts cross gradient operators

 $G_x = (z_9 - z_5)$ and $G_y = (z_8 - z_6)$

Gradient Approximations (1):

Roberts Cross Gradient Operator

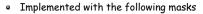
Implemented with the following masks

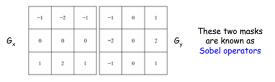
G _×	-1	0	0	-1	G,
U _X	0	1	1	0	υγ

- Difficult to implement given its "awkward" size
 - Minimum mask we are interested in is 3x3!
 - Approximation using a 3x3 mask can be given

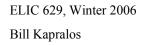
 $G[f\{x,y\}] = |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$ + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|

Gradient Approximations (2):





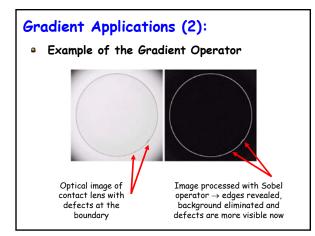
- Difference between third and first rows approximates derivative in x direction
- Difference between third and first columns approximates derivative in y direction



Gradient Applications (1):

Many Applications and Uses

- Industrial applications
 - Aid humans in detecting defects → enhances defects and eliminates slowly changing background features
 - Pre-processing step in automated inspection
- Edge detection
- Highlight small specs not visible in gray scale image
- Enhance small discontinuities in flat gray field



Second Order Derivatives The Laplacian Operator

Introduction (1):

- 2D, Second Order Derivative Operator
 - Basic approach
 - Define some discrete formulation for the second derivative
 - Using this formulation, define a filter mask (template etc.)
 - Isotropic filters \rightarrow rotation invariant filters
 - Filter response independent of the direction of discontinuity
 - Rotating image and applying filter yields same results!

Introduction (2):

 Simplest Isotropic Derivative Operator is the Laplacian, Defined for Image f(x,y) as

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

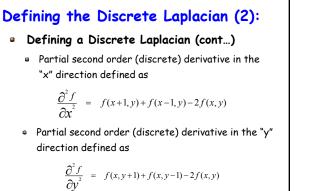
- Laplacian is a linear operator
 - Derivatives of any order are linear operators
- Above expression is of course formulated in a continuous form
 - Must "convert" to discrete form if it is to be of any use for image processing

Defining the Discrete Laplacian (1):

- Several Ways to Define a Discrete Laplacian Using Neighborhoods
 - Must however satisfy the second order derivative properties previously described
 - Recall second order derivative previously given

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

 We will basically "expand" on this formulation to account for both spatial variables x,y



Defining the Discrete Laplacian (3):

Defining a Discrete Laplacian (cont...)

 By summing the x,y components, we obtain the digital implementation of the 2D Laplacian

$$\nabla^2 f = [f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)]-4f(x,y)$$

- Can be implemented using the following mask (kernel)
- Isotropic results for rotations in multiples of 90° only!

0	1	0
1	-4	1
0	1	0

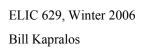
 In other words, diagonal directions ignored!

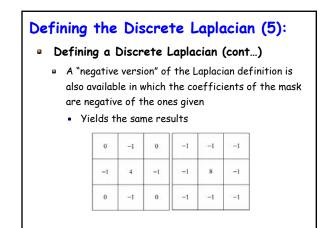
Defining the Discrete Laplacian (4):

Defining a Discrete Laplacian (cont...)

- Diagonal directions can however be incorporated by adding two more terms, one for each of the two diagonal directions
- Can be implemented using the following mask (kernel)
- Isotropic results for rotations in multiples of 45° only!

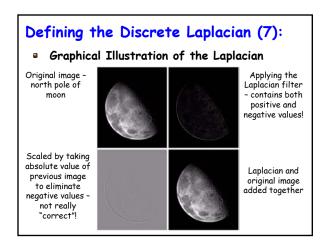
	1	1	1
5	1	-8	1
	1	1	1



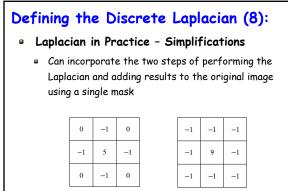


Defining the Discrete Laplacian (6):

- Laplacian in Practice
 - Since it is a derivative operator, it highlights gray level discontinuities and deemphasizes regions with slow varying gray levels
 - Produces images that have grayish edge lines and other discontinuities on featureless background
 - Typically, add (or subtract if negative version of mask used) the Laplacian output image to the original input image
 - Recover the background
 - Preserve sharpening effect of the Laplacian



ELIC 629, Winter 2006 Bill Kapralos



Diagonal directions ignored Diagonal directions emphasized