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Before We Begin 

Administrative Details (1):
Lab 6 Today

This lab may be spread across two days

There is a report required for this lab but no lab 
assignment

Due Mar. 21 2006 → if one week to complete
Due Mar. 28 2006 → if two weeks to complete

Mid-Term Exams
Will be returned during the lab period

We will discuss the solutions at a latter time

Some Questions to Consider (1):
What is spatial filtering ?

What is a smoothing spatial filter ?

What is an averaging filter ?

What is a weighted averaging filter ?

What is a sharpening filter ?
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Image Edges

Introduction (1):
What is an Edge ?

Intuitively → a border between two regions, 
where each region has (approximately) uniform 
brightness (gray level)

In an image edges typically arise from 
1. Occluding contours in an image

• Two image regions correspond to two 
different surfaces

2. Abrupt changes in surface orientation 
3. Discontinuities in surface reflectance

Introduction (2):
What is an Edge ? (cont…)

Edge due to 
an occluding 

contour

Edge due to an 
abrupt change 

in surface 
orientation
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Introduction (3):
What is an Edge ? (cont…)

Edge due to 
a change in 

surface 
reflectance

Importance of Edge Detection (1):
In Typical Images, Edges Characterize 

Object Boundaries/Borders
Allows us to locate/identify objects in a scene e.g., 
to segment an image → many, many applications!

Importance of Edge Detection (2):
A More realistic Example
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Modeling an Edge (1):
Ideal Edge Model

A set of connected pixels, each of which is located 
at an orthogonal step transition in gray level

Model of ideal 
digital edge

Gray-level profile 
of horizontal line 

through image
Orthogonal step 
transition from 
“low” to “high”

Modeling an Edge (2):
In Practice, Ideal Edges Don’t Exist!

Sampling and the fact that sampling acquisition 
equipment etc. is far from perfect leads to edges 
that are blurred 
Changing illumination (lighting conditions) will cause 
changes to edges & all parts of an image in general

Changing lighting conditions are actually a HUGE 
problem for vision/image processing tasks →
many algorithms will not generalize across 
different lighting conditions
Color constancy → a big field in computer vision 
but still an un-solved problem! 

Modeling an Edge (3):
Reality → Edges Have a “Ramp-Like” Profile

The slope of the ramp is inversely proportional to 
the degree of blurring in the edge 
Updated definition → region of image in which the 
gray-level changes significantly over short distance

Model of ramp 
digital edge

Gray-level profile of 
digital ramp edge →

no longer a sharp 
transition from low 
to high but rather a 
gradual transition 
from low to high
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Modeling an Edge  (4):
In Practice, Ideal Edges Dont Exist! (cont.)

Edge is no longer a one-pixel thick path
An edge point is now any point contained in the 
ramp and an edge would be a set of such points 
which are connected
Thickness of edge depends on length of ramp 
which is determined by its slope which itself is 
determined by the amount of blurring
Blurred edges are typically thicker e.g., the 
greater the blurring → the thicker the edge

Sharpening Filters
(Review)

Foundation (5):
First Order Derivative in Greater Detail

Basic definition of a first order 1D function f(x) is 
the difference
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Remember → above definition is of one variable (x) 
only since images are a function of two variables x,y 
e.g., f(x,y) we will be dealing with derivatives along 
both spatial axis “separately” hence the use of 
“partial derivative”
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Foundation (6):
Second Order Derivative in Greater Detail

Basic definition of a first order 1D function f(x) is 
the difference
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Once again, remember, above definition is for one 
variable only whereas in digital images we are 
dealing with two variables, x,y

)(2)1()1(2

2

yfyfyf
f

y
−−++=

∂
∂

Foundation (7):
Graphical Illustration of Digital Derivatives

“Simple”
original image

1D horizontal gray 
level profiles 

along center of 
image including 
isolated noise 

point

“Simplified”
profile

Foundation (8):
Graphical Illustration Explained

Traversing profile from left to right
First order derivative is non-zero along entire 
ramp but second order derivative is non-zero 
only at onset and end of ramp
Since edges in image have similar profile, we can 
conclude first order derivative produces “thick”
edges while second order derivatives produces 
“finer” edges 
A second order derivative enhances much more 
finer detail than first order derivative (but also 
enhances noise as well!)
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Foundation (9):
Graphical Illustration Explained (cont…)

To summarize
1. First order derivatives generate thicker edges 

in an image 
2. Second order derivatives have stronger 

response to fine detail e.g., thin lines and 
isolated points (noise as well)

3. First order derivatives have stronger response 
to gray level step

4. Second order derivatives produce double 
response at step changes in gray level

Foundation (10):
Graphical Illustration Explained (cont…)

To summarize (cont…)
Generally, second order derivatives are better 
for image enhancement as opposed to first order 
derivatives since they are able to enhance such 
fine detail

First Order Derivatives  
The Gradient
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Introduction (1):
Gradient Defined

Gradient is a measure of change in a function

An image can be considered to be an “array” of 
samples of some continuous function of intensity

Significant changes in gray levels in image can 
thus be detected using discrete approximation 
of gradient
Edge detection → detecting significant local 
changes in an image

Two-dimensional equivalent of the first derivative

Introduction (2):
Gradient Defined (cont…)

For function f(x,y) gradient of f at coordinates 
(x,y) is defined as a two-dimensional column vector
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Gradient Properties (1):
Two Important Properties of Gradient

1. Vector G[f(x,y)] points in direction of maximum 
increase of function f(x,y)

2. Magnitude of gradient equals maximum rate of 
increase of f(x,y) per unit distance in direction G. 
Magnitude given as
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Gradient Properties (2):
Properties of the Gradient

Components of gradient vector are linear

Magnitude of gradient vector is not linear given 
squaring and square root operations

Partial derivates of gradient vector are not 
isotropic (e.g., not rotation invariant)

Magnitude of gradient is isotropic

Often, although incorrect, we refer to the 
magnitude of the gradient as the gradient itself

Gradient Properties (3):
Properties of the Gradient (cont…)

Implementing the gradient magnitude equation for 
an entire image is very computationally expensive 
and certainly not a trivial matter!

Approximate gradient mag. using absolute values

mag(G[f(x,y)]) = |Gx| + |Gy| 

Above equation is easier to compute and 
preserves relative changes in gray levels
Isotropic property generally lost → as with 
Laplacian preserved for limited number of 
rotational increments, depending on mask

Approximating the Gradient (1):
Digital Approximation to Gradient

Recall → derivatives in images are approximated by 
differences between pixel intensity (gray levels)

Gradient approximated by differences

For simplification, will use previous definition of  
3x3 image region, where center pixel is “pixel of 
interest”

z1 z2 z3

z4 z5 z6

z7 z8 z9

Sub-image 
region

Recall, z5 denotes f(x,y),
z1 denotes f(x-1,y-1), etc.
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Approximating the Gradient (2):
Digital Approximation to Gradient (cont…)

Simplest approximation to first order derivative 
satisfying previously stated conditions is

Gx = (z8 – z5) and Gy = (z6 – z5) 
Other definitions available including one proposed 
by Roberts in 1965, uses “cross differences” and 
known as the Roberts cross gradient operators

Gx = (z9 – z5) and Gy = (z8 – z6) 

Gradient Approximations (1):
Roberts Cross Gradient Operator

Implemented with the following masks

Gx Gy

Difficult to implement  given its “awkward” size
Minimum mask we are interested in is 3x3!
Approximation using a 3x3 mask can be given 

G[f{x,y)] = |(z7 + 2z8 + z9) - (z1 + 2z2 + z3)| 

+ |(z3 + 2z6 + z9) - (z1 + 2z4 + z7)| 

Gradient Approximations (2):
Roberts Cross Gradient Operator (cont…)

Implemented with the following masks

Gx Gy

Difference between third and first rows 
approximates derivative in x direction

Difference between third and first columns 
approximates derivative in y direction

These two masks 
are known as 

Sobel operators
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Gradient Applications (1):
Many Applications and Uses

Industrial applications
Aid humans in detecting defects → enhances 
defects and eliminates slowly changing 
background features 
Pre-processing step in automated inspection

Edge detection

Highlight small specs not visible in gray scale image

Enhance small discontinuities in flat gray field

Gradient Applications (2):
Example of the Gradient Operator

Optical image of 
contact lens with 
defects at the 

boundary

Image processed with Sobel 
operator → edges revealed, 
background eliminated and 

defects are more visible now

Second Order Derivatives 
The Laplacian Operator
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Introduction (1):
2D, Second Order Derivative Operator 

Basic approach
Define some discrete formulation for the second 
derivative 
Using this formulation, define a filter mask 
(template etc.) 

Isotropic filters → rotation invariant filters 
Filter response independent of the direction of 
discontinuity 
Rotating image and applying filter yields same 
results!

Introduction (2):
Simplest Isotropic Derivative Operator is 

the Laplacian, Defined for Image f(x,y) as
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Laplacian is a linear operator
Derivatives of any order are linear operators

Above expression is of course formulated in a 
continuous form

Must “convert” to discrete form if it is to be of 
any use for image processing

Defining the Discrete Laplacian (1):
Several Ways to Define a Discrete Laplacian 

Using Neighborhoods
Must however satisfy the second order derivative 
properties previously described 

Recall second order derivative previously given
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We will basically “expand” on this formulation to 
account for both spatial variables x,y
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Defining the Discrete Laplacian (2):
Defining a Discrete Laplacian (cont…)

Partial second order (discrete) derivative in the 
“x” direction defined as
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Partial second order (discrete) derivative in the “y”
direction defined as
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Defining the Discrete Laplacian (3):
Defining a Discrete Laplacian (cont…)

By summing the x,y components, we obtain the 
digital implementation of the 2D Laplacian

Can be implemented using the 
following mask (kernel)

Isotropic results for rotations 
in multiples of 90o only!

In other words, diagonal 
directions ignored!
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Defining the Discrete Laplacian (4):
Defining a Discrete Laplacian (cont…)

Diagonal directions can however be incorporated 
by adding two more terms, one for each of the two 
diagonal directions

Can be implemented using the 
following mask (kernel)

Isotropic results for rotations 
in multiples of 45o only!
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Defining the Discrete Laplacian (5):
Defining a Discrete Laplacian (cont…)

A “negative version” of the Laplacian definition is 
also available in which the coefficients of the mask 
are negative of the ones given

Yields the same results

Defining the Discrete Laplacian (6):
Laplacian in Practice

Since it is a derivative operator, it highlights gray 
level discontinuities and deemphasizes regions with 
slow varying gray levels

Produces images that have grayish edge lines and 
other discontinuities on featureless background

Typically, add (or subtract if negative version of 
mask used) the Laplacian output image to the 
original input image

Recover the background
Preserve sharpening effect of the Laplacian

Defining the Discrete Laplacian (7):
Graphical Illustration of the Laplacian

Original image –
north pole of 

moon

Applying the 
Laplacian filter 
– contains both 

positive and 
negative values!

Scaled by taking 
absolute value of 
previous image 

to eliminate 
negative values –

not really 
“correct”!

Laplacian and 
original image 

added together
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Defining the Discrete Laplacian (8):
Laplacian in Practice – Simplifications

Can incorporate the two steps of performing the 
Laplacian and adding results to the original image 
using a single mask

Diagonal 
directions ignored

Diagonal directions 
emphasized


