ELIC 629

Digital Image Processing

Winter 2005

Image Enhancement in the Spatial Domain:

Mid-Term Exam Review

Bill Kapralos

Tuesday, February 14 2006

ELIC 629. Winter 2006. Bill Kapralos

~			/ 4 N	٠.
UV	2rvi	iew (п
•	•. •			,

- Material You are Responsible For
 - Sections covered
- Some Notes Regarding "Important Topics"
 - Spatial filtering example

Material You are Responsible For (1):

- Chapters and Sections Covered in the Exam
 - Chapter 1
 - All sections
 - Easy read → you should know the basic definitions such as, what is an image, what is digital image processing and should be aware of some of the fields that use image processing
 - □ Chapter 2
 - Section 2.1: elements of visual perception → you should know some of the basic definitions related to the eye and image formation, in particular, focus on lecture notes

•	
\neg	

Material You are Responsible For (2):

- Chapters and Sections Covered in the Exam
 - a Chapter 2
 - Section 2.2: light and the electromagnetic spectrum → you should know what the EM is
 - Section 2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4: image sensing and acquisition \rightarrow important!
 - Section 2.4, 2.4.1, 2.4.2: image sampling and quantization → important!
 - Section 2.5, 2.5.1, 2..2, 2.5.3, 2.5.4: Basic relationships between pixels → important!
 - Section 2.6: Linear and non-linear operators \rightarrow you should know definition of linear operator!

Material You are Responsible For (3):

- Chapters and Sections Covered in the Exam
 - a Chapter 3
 - Section 3.1: background
 - Section 3.2, 3.2.1, 3.2.2, 3.2.3, 3.2.4: basic gray level transformations \rightarrow you should be familiar with the various transformations we covered in the lectures
 - Section 3.3 (up to page 90 only): histogram processing → you should know what a histogram, how to construct one and how to normalize one
 - Section 3.4, 3.4.1: Enhancement using arithmetic and logic operators

Material You are Responsible For (4):

- Chapters and Sections Covered in the Exam
 - Chapter 3 (cont...)
 - Section 3.5: Basics of spatial filtering → you should know what a mask (template, kernel) is, what the coefficients are and coordinate system of the mask e.g., origin at (0,0)
 - Section 3.6, 3.6.1, 3.6.2: Smoothing spatial filters \rightarrow important!
 - ${\color{blue} \bullet}$ Spatial filtering is important! Convolution etc.

Material You are Responsible For (5):

- Important Material
 - You are responsible for all sections we covered as listed in the previous slides.
 - Although the notes do contain plenty of information and probably the most important information, keep in mind, you are also responsible for the material in the corresponding sections in book \rightarrow I cannot include every piece of information from the book in the lecture slides!
 - Spatial filtering is a very important topic and you should know how to filter an image using a mask

Material	You	are	Responsi	ble	For	(5)) :
----------	-----	-----	----------	-----	-----	-----	------------

- Important Material (cont...)
 - You are responsible for knowing Matlab at least with respect to the Labs we have already completed.
 - Creating matrices in Matlab
 - Now you should realize the importance of completing the Matlab review exercise!

Additional Notes

Spatial Filtering Example (1):

- Convolution
 - Consider the following sub-image intensity values
 - We wish to perform a blurring (averaging) operations using the kernel shown below
 - Lets work through the operation for one pixel (the shaded pixel)

10	12	50	45	128
5	10	100	25	55
225	200	210	30	40
100	125	100	0	125
10	20	25	120	15

Spatial Filtering Example (2):

- Convolution (cont...)
 - Recall the following expression

$$R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + ... + w(0,0)f(x,y) + ... + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1)$$

or, its equivalent "shorter" notation

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Spatial Filtering Example (3):

Convolution (cont...)

$$\begin{split} g(x,y) &= (1/9)(1)(10) + (1/9)(1)(12) + (1/9)(1)(50) + \\ &\qquad (1/9)(1)(5) + (1/9)(1)(10) + (1/9)(1)(100) + \\ &\qquad (1/9)(1)(225) + (1/9)(1)(200) + (1/9)(1)(210) \end{split}$$

= (1/9) × [822]

= 91.3 = 91 (recall, integer intensity values!)

Spatial Filtering Example (4):	
How About Median Operation on the Same	
Sub-Image ? • How would we perform a median operation on the same pixel (shaded one)?	
Same pixer (shaded only).	
Good Luck!	