TCP is Competitive against a Limited Adversary *

Jeff Edmonds, Suprakash Datta, Patrick Dymond
Computer Science and Engineering Department,
York University,

4700 Keele Street,

Toronto, ON M3J 1P3, Canada
jeff, datta, patrick@cs.yorku.ca

Abstract

The well-known Transport Control Protocol (TCP) is a crucial component of the
TCP/IP architecture on which the Internet is built, and is a de facto standard for reli-
able communication on the Internet. At the heart of the TCP protocol is its congestion
control algorithm. While most practitioners believe that TCP congestion control al-
gorithm performs very well, a complete analysis of the congestion control algorithm
is yet to be done. A lot of effort has, therefore, gone into the evaluation of different
performance metrics like throughput and average latency under TCP. In this paper, we
approach the problem from a different perspective and use the the competitive analysis
framework to provide some answers to the question “how good is the TCP/IP conges-
tion control algorithm?” First, we prove that for networks with a single bottleneck
(or point of congestion), TCP is competitive to the optimal centralized (global) algo-
rithm in minimizing the user-perceived latency or flow time of the sessions, provided
we limit the adversary by giving it strictly less resources than TCP. Specifically, we
show that with O(1) times as much bandwidth and O(1) extra time per job, TCP
is O(1)-competitive against an optimal global algorithm. We motivate the need for
allowing TCP to have extra resources by observing that existing lower bounds for non-
clairvoyant scheduling algorithms imply that no online, distributed, non-clairvoyant
algorithm can be competitive with an optimal offline algorithm if both algorithms
were given the same resources. Second, we show that TCP is fair by proving that
it converges quickly to allocations where every session gets its fair share of network
bandwidth.

1 Introduction

Most of the traffic on the Internet today is generated by applications which use the transport
control protocol (TCP). According to one study [TMW97], 95% of the bytes and 90% of the

*An extended abstract of this paper appeared in SPAA 2003 [JEO03].

1

packets sent over the Internet use TCP. TCP is a large and complex protocol that solves
several different problems, including reliable data transfer, flow control, congestion control,
and fair allocation of network resources (See the Appendix for a very brief introduction
to TCP). The most important component of TCP, and the part that contributes the most
towards its performance, is the congestion control algorithm. There has been a lot of em-
pirical evidence that suggests that the TCP congestion control algorithm provides superior
performance to most proposed alternatives. Naturally, there is a significant body of research
devoted towards evaluating the quality of TCP. Most of these research efforts have concen-
trated on evaluating (either empirically or analytically) the value of performance metrics like
throughput. While such results are useful, they do not provide answers about the optimality
of the algorithm. In this paper, we evaluate the performance of TCP on single-bottleneck
networks, i.e., in a network where there is a single point of congestion, using the traditional
competitive analysis framework [MR95]. Thus, we compare the performance of TCP (which
is an online algorithm) with that of an optimal offline algorithm. We prove that (a simplified
version of) TCP satisfies the transmission requests of all users! in an efficient and fair way.
We show that existing lower bounds from non-clairvoyant scheduling theory imply that no
online, distributed, non-clairvoyant algorithm can be competitive with an all-powerful ad-
versary. This suggests that the power of the adversary should be limited to level the playing
field. A popular approach for doing this is to explicitly limit the adversary in some way, e.g.,
by limiting its freedom in choosing its inputs. In this paper, we use an alternative approach
that has been utilized very successfully in scheduling theory [Edm99, KP00, EP01], viz.,
giving the online algorithm strictly more resources compared to the adversary. Using this
approach, we first prove that TCP performs competitively against any all-powerful adversary
if it is given a constant times more bandwidth and either (a) some extra time, or (b) we
assume that no job is smaller than a certain size. Second, we study the fairness properties of
TCP and prove that TCP converges quickly to allocations where every session gets its fair
share of network bandwidth.

An interesting byproduct of our paper is that it emphasizes and exploits a very natural con-
nection between the TCP congestion control algorithm and the theory of online algorithms
and non-clairvoyant scheduling. This provides a new theoretical approach for analyzing TCP
variants and exploring parameter settings under different network assumptions.

This paper is organized as follows. Section 2 describes the our simplified model of TCP.
Section 3 describes how TCP can be viewed as a scheduling algorithm, and introduces the
scheduling model. Section 4 surveys the literature on the performance analysis of TCP and
results from scheduling theory relevant to this paper. Section 5 presents the main results of
the paper. The Appendix contains a very brief introduction to TCP.

2 The TCP Congestion Control Algorithm

While TCP solves several problems, this paper focuses on the congestion control (preven-
tion, detection, and reaction to congestion in the network) algorithm of TCP. TCP runs at

IFor simplicity, we use “users” and “sessions” interchangeably in this paper.

every sender/receiver in a distributed manner. There is no communication between differ-
ent sessions. In this paper (as in most papers in the literature), we model only the basic
algorithmic strategy used by TCP. This strategy (commonly referred to as additive-increase-
multiplicative-decrease or AIMD) is very simple: at every step, each source is allowed to
increase its sending rate by an additive constant a. When it detects congestion, the TCP
algorithm requires the sender to cut its sending rate by a multiplicative constant 3. In this
paper, we refer to this action as an adjustment.

Detection of network congestion is a difficult task, since no support from switches and routers
is assumed (TCP does not receive any messages from the switches or routers that packets
pass through en route to their destinations). Congestion can only be inferred (perhaps
incorrectly) from end-to-end observations. TCP sends acknowledgments to the sender for
every packet that reaches its destination, and infers congestion from the late arrival or non-
arrival of acknowledgments.

We emphasize that in reality, TCP uses windows of packet sequence numbers and a “self-
clocking” mechanism instead of actual transmission rates. TCP also has many other details
that we do not model in this paper. For example, we do not model the fact that the maximum
possible window size is limited to a constant (often 32 kB), which implies an upper bound
on the rate at which data can be transmitted. The reader is referred to the books by Kurose
[KROO0] and Stevens [Ste94] for more information on the protocol.

Our model of the TCP congestion control algorithm is as follows. We model the transmission
of a file of data through a network as the flow of a fluid that can be allocated a variable
bandwidth /transmission rate. Such an assumption has been made frequently in the literature
to carry out the analysis (See, e.g., [KMT98, Kel01]). The sender of each job J; uses TCP
to determine the rate bl (¢) at which it transmits its job J; (Throughout the paper, we use
the superscript T' to denote that this bandwidth was allocated by TCP). This sender has
no knowledge about the other jobs; it starts with b7 () = 0, and increases its transmission
rate linearly at a constant rate of 9b7 (t)/0t = « (typically @ = 1) until it infers that the
bottleneck has reached capacity (from non-acknowledgment of some packet). At this point
in time ¢, the sender cuts its own rate b} (¢) by a multiplicative factor of § (typically § = 3).
We call this event an adjustment and call time ¢ an adjustment point. After each such
adjustment, the sender resumes increasing the rate linearly at a rate of @. When the total
transmission rate through the bottleneck exceeds its capacity, the bottleneck “loses” the
excess data. For simplicity, we will assume that there is a fixed delay of 0 between the time
a bottleneck loses some data and the time when the senders learn about it.

3 TCP Viewed as a Scheduling Algorithm

As mentioned in the previous section, We model data as a fluid. Similarly, we model the
execution of a fully parallelizable job that can be allocated a variable (real) number of
processors. Within these abstractions, the problem of scheduling bandwidth to a number
of transmission sessions is identical to that of scheduling a number of processors to a set of
parallelizable jobs. The latter problem has a rich history of results [MPT94, KP00, Edm99,

EPO01]. This paper applies and extends those results to the former problem.

3.1 The scheduling problem

We assume that there is a single bottleneck in our network? which causes all data losses.
In reality this bottleneck may be a link or a router. We assume that the bottleneck has a
maximum capacity B; if data arrives at a rate higher than B, the excess data is lost. The
input consists of a set of jobs (or sessions) J = {J;}. Each job J; is defined by its arrival time
a; and its length (or size) [;. In keeping with Scheduling Theory, we associate with each job a
speedup function I'(x); this function models the parallelizability of the job by providing the
speedup (or reduction in the time of execution of the job) obtained if it was given x amount
of resources. Examples of “natural” speed-up functions are fully parallelizable T'(x) = x and
sequential I'(x) = 1 work.

A scheduling algorithm ALG, must schedule the transmission of the jobs at speed s (i.e. with
s times the resources given to the all-powerful adversary). At each time ¢, the algorithm
allocates b2 (t) bandwidth to job J; passing through it. Since the bottleneck has capacity
sB, Yieq, bA(t) < sB. A job of length I; completes at time ¢ if the algorithm allocates

enough bandwidth so that facA bA(t)dt = ;.

We use the flow time L£(ALG;) of a scheduling algorithm ALG, as a measure of its per-
formance. The flow time [MPT94, KP00, Edm99, EP01] is the average time between the
arrival time and completion time of a job, i.e. Avg;cs[ci* — a;]. This measure is sometimes
called the user-perceived latency in the Systems literature. As mentioned before, we measure
the performance of an algorithm by its competitive ratio which is defined as the ratio of the
flow time of ALG, to the flow time of the optimal algorithm for the worst set of jobs, i.e.,

max .z w. In this paper, we allow algorithm ALG; to have some extra time D(J) as
L(ALGs(J))

well. In this case, the competitive ratio is defined as max ZOPTH) 1DT) We emphasize
that the subscript for the optimal algorithm OPT is used to remind the reader that the
optimal algorithm is given less resources than the online algorithm.

Any algorithm that solves the preceding scheduling problem must be an online algorithm
[BEY98] (since it must allocate its bandwidth as jobs arrive, without knowledge of future
arrivals), non-clairvoyant [MPT94, KP00, Edm99] (it only knows when a job arrives and
when it completes, but does not know the amount of work remaining or the parallelizability
of the jobs) and distributed (the sender of a job has no knowledge of the other jobs or
even the maximum bandwidth of the bottlenecks). It only receives limited feedback about
his own transmission loss due to bottleneck overflow. While it is known that the Shortest-
Remaining-Work-First is the optimal scheduling algorithm for this problem when all the jobs
are fully parallelizable, neither non-clairvoyant nor distributed scheduling algorithms have
enough information to execute the Shortest-Remaining-Work-First algorithm. The optimal
scheduler, in contrast, has complete information about all jobs. Equivalently, we can assume
that the optimal scheduler is the adversary that chooses the worst-case input which is good
for itself and bad for the online algorithm.

2For preliminary results on the general case (multiple bottlenecks), please see [Edm04]

4

4 Related work and our results

As we have mentioned before, most of the existing analyses of TCP attempt to evaluate ex-
plicitly some performance metric after making some probabilistic assumptions on the inputs.
In contrast, competitive analysis makes no assumptions about inputs and provides worst-case
results. We survey relevant previous work in both areas in the following two subsections.
Then, we turn to relevant work on the fairness of the TCP congestion control algorithm.
Relevant work from the theory of non-clairvoyant scheduling algorithms are surveyed next.
The final subsection presents our results.

4.1 Probabilistic analysis of TCP congestion control

Many papers study the efficiency of TCP by evaluating its throughput. Most of these make
the simplifying assumption that every packet gets dropped with probability p independent of
all other packet drops. Under this assumption, several papers [MSMO97, LM97| show that
for low values of p, TCP throughput is proportional to 1//p. The same result was proved in
[OKMO96] for more elaborate models of TCP. [PFTKS88| showed that throughput decreases
faster (roughly proportional to 1/p) at higher values of p. All these papers assume constant
round-trip times. Misra and Ott [MO99] incorporated state-dependent packet loss probabil-
ities into their model and studied the stationary distribution of the congestion window.

Kelly et al. [KMT98, Kel01] consider multibottleneck models but constant round-trip times.
Using control-theoretic methods, they prove that a simplified version of the TCP congestion
control algorithm is stable — i.e., it converges to a stable equilibrium point which results in
fair allocations of the bottleneck capacities. Johari and Tan [JT01] and Massoulie [Mas02]
study the effect of variable round-trip times on stability and show that stability is achieved
even under this assumption. All these papers deal with rates instead of windows of sequence
numbers to simplify the analysis.

It is worth noting that we do not study any of the many enhancements to TCP proposed in
recent years which rely on router support to aid the TCP congestion control algorithm. An
important example of such enhancement is explicit congestion notification (ECN), in which
the router explicitly passes information about the congestion it sees to senders of packets.
We are currently extending our results for the case where routers run a randomized active
queue management algorithm somewhat similar to RED [FJ93].

4.2 Competitive analysis of TCP congestion control

Aspects of TCP protocol have been analyzed using competitive analysis, see e.g., [DGSO01].
However, the problem of analyzing TCP congestion control using competitive analysis was
suggested by Karp et al. in the seminal paper [KKPS00], who studied the question: “Of
which problem is TCP/IP congestion control the solution?” In their model, a TCP session
attempts to guess a threshold u (intuitively the ideal transmission rate for the session), and
the network (modeled as an adversary) imposes a cost ¢(z,u) on the session where z is the
current guess of the session. They assume u to be a positive integer and that the algorithm

b}

knows an upper bound n on u. They also consider a dynamic version of the problem where
the threshold u can change over time and study ways in which the power of the adversary can
be limited in changing the threshold u. Recently, Arora et al. [AB02] studied the same model
and proposed an optimal randomized algorithm for the same problem. Unfortunately, these
models were not rich enough to model all the essential aspects of TCP congestion control, and
so these papers could not uncover theoretical reasons for the empirically observed superiority
of TCP congestion control to most of the proposed alternatives.

4.3 Fairness of TCP congestion control

Chiu and Jain [CJ89] studied fairness and efficiency of the additive-increase-multiplicative-
decrease rate adjustment algorithm from a control-theoretic standpoint. The main result
of their paper is that as long as no jobs arrive or complete, TCP converges towards fair

T 2
T%U% converges to 1). Subsequently,
ieg N\

several papers (e.g., [Flo91, HSMK98|) studied fairness issues in TCP.

allocations (they show that the global measure

4.4 Previous Scheduling Results

Kalyanasundaram and Pruhs [KP00] present a simple non-clairvoyant algorithm Balance
and prove that for every set of jobs it performs within a factor of 23 =1+ % of the optimal
schedule as long as it is given s = 1 + € times the speed. Such an algorithm is said to be a
O(1)-speed O(1)-competitive algorithm. Equi-partition (EQUI) is a simple, natural and fair
scheduling algorithm that is used extensively in practice. It allocates an equal (potentially
non-integer) number of processors to each unfinished job. Edmonds [Edm99, Edm01] proves
that EQUI is competitive as long as it is given s = 2 + € times the speed, even (rather
surprisingly) for jobs with fully parallelizable and sequential phases. We note that EQUI
has been called other names, e.g., Generalized Processor Sharing [PG94]. All the algorithms
mentioned in this section limit the adversary by allowing the online algorithm more resources
than the optimal algorithm. This strategy has also been called resource augmentation in
some papers (See, e.g., [PSTWIT]).

Motwani et al. [MPT94] prove that for every deterministic non-clairvoyant scheduler without
any extra power (i.e., the scheduler has no more resources than the optimal algorithm, or
equivalently, without any limitations imposed on the power of the adversary), there is a set of

n jobs on which the scheduler does a factor of Q(n!/3) worse than the optimal schedule. For
EQUI, this ratio is Q(>-). It is likely this lower bound holds for all distributed schedulers

log
when the optimal algorithm has the same resources as the distributed scheduler.

4.5 Our Results

In this paper, we view TCP as a very simple and natural online, non-clairvoyant and dis-
tributed scheduling algorithm. We show that (our simplified version of) TCP is competitive
against an optimal offline scheduler, provided we limit the power of the adversary.

6

Chiu et al. [CJ89] proved that if no jobs come in or leave, TCP converges quickly to EQUI
with (%)B total bandwidth. In this paper, we extend their results and allow jobs to arrive
and leave over time. Under these assumptions, TCP takes longer to converge to EQUI.
For periods of time after the arrival or the completion of jobs, some jobs may not be given
their fair share of the bandwidth. Therefore, the algorithm may no longer be competitive,

especially if these starved jobs are short.

Our first result, (in Section 5.2), proves that for TCP with s = O(1) extra bandwidth and

D(J) extra time, L(O%(l?lc(?)gigw) = O(1).> Here D(J) is some extra time which can be

|T711-B)B

crudely upper bounded by O (), where | 7| is the number of jobs in J. Intuitively,
this captures the fact that TCP needs O(1) extra time per job to be competitive. We will
defer the actual definition of D(J) to Section 5.2 for simplicity of exposition, where we
will show that D(J) is typically much smaller than this upper bound. Our second result,
(in Section 5.3), shows that TCP converges quickly to the allocations produced by EQUI.
In particular, it bounds the total time that a job is not getting its fair share to being at
most a few adjustment periods at the beginning and the end of each job. The length of an
adjustment period is at most O(=2 %) when there are n(t) jobs in the system at time ¢,
because it only takes this much time for n(t) jobs increasing their individual bandwidth at
a rate of « to increase the total bandwidth from the decreased total of (1 — 3)B back to the
bottleneck’s capacity B. We expect that this will typically be a small fraction of the job’s

total life.

Our results can be interpreted as follows. First, TCP is O(1)-competitive if the adversary
is limited in the manner described before and all sessions are of a certain minimum length.
In the presence of short sessions, the competitive ratio may not be a constant, in keeping
with the intuition that EQUI (and of course OPT) may finish small jobs much faster than
TCP. To our knowledge, this is the first result on the competitiveness of the TCP congestion
control algorithm Another interesting aspect of our work is that we prove our results by
comparing TCP to EQUI instead of the optimal algorithm. In our simplified model, EQUI
captures precisely the notion of fairness used by TCP,* and this allows us to prove fairness
properties as a byproduct. It is worth pointing out that our fairness results are subsumed
by similar results proved for multi-bottleneck networks in [KMT98, Kel01, JT01, Mas02].

Finally, our results hold for any constant «, (3 satisfying @ > 0 and 0 < § < 1. In Section 5.6,
we quantify some of the tradeoffs involved in choosing the parameters o and j3.

5 Fairness and efficiency of TCP

Our fairness results hold for any fixed 6 > 0. In order to simplify exposition, we will
prove our results for the case 6 = 0, corresponding to the assumption that senders receive

3We point out that an equivalent form of our result is % = O(1). However, this version is

less meaningful if L(TCP4(J)) < D(J).

4We remind the reader that TCP congestion control uses windows of sequence numbers and not rates.
Therefore, two sessions may have the same window sizes but use different bandwidths if they have different
roundtrip times. This complicates the notion of fairness in more complex models of TCP.

7

instantaneous feedback when bottleneck capacity is exceeded. In Section 5.5 we investigate
the impact of delayed feedback (i.e., § > 0) on the efficiency of TCP.

5.1 Lower Bounds for Non-clairvoyant Schedulers

TCP, being on-line, non-clairvoyant, and distributed, is not always able to compete against
an optimal scheduler. We motivate the need to give TCP a constant times extra bandwidth
and some extra time to adjust by showing that lower bounds for non-clairvoyant schedulers
imply lower bounds for TCP.

Motwani et al. [MPT94] prove that for every deterministic non-clairvoyant scheduler (of
which TCP is an example), the competitive ratio is Q(n'/3). Thus TCP needs at least a
constant factor more resources than the optimal algorithm in order to be competitive.

For EQUI, the competitive ratio is known to be Q(%) Kalyanasundaram and Pruhs
[KP0O] prove that even with speed s = 2 — ¢, EQUI has competitive ratio of Q(n¢). It is
only with speed s = 2 + ¢, that Edmonds [Edm99] proves that EQUI is O(1)-competitive.
Since EQUI has more information than TCP, it is reasonable to expect that TCP also needs

a speed s satisfying s > 2 + €.

5.2 Extra bandwidth and adjustment time

Ideally one would like to show that TCP, even though it is on-line, non-clairvoyant, and
distributed, always has a competitive user perceived latency (or flow time). However, this
is not true. We will prove that TCP is competitive if it is given more resources than the
optimal algorithm. The extra resources are a constant times more bandwidth and either
some extra time (equal to a constant number of adjustment periods per job). The latter is
unnecessary if all the jobs live for at least a constant number of adjustment periods.

We prove our results by comparing TCP to EQUI, which we already know is competitive if
it has a constant factor more bandwidth than the optimal. We now describe the intuitive
reasons for the extra powers needed by TCP in order to be perform as well with EQUI
(and thus be competitive). Since no sender in our model knows about the other senders, it
takes a while for the system to adjust to jobs arriving and completing. In contrast, EQUI
adjusts its allocations instantly. We prove that despite this, TCP converges towards EQUI
exponentially fast for each job. We show that at all adjustment points, at least ¢ periods
after a job arrives, the bandwidth allocated by TCP to the job is at least a factor of 1 — (39 of
that allocated by EQUI (see Theorem 3). We will choose some constant ¢ and compensate

TCP for this remaining gap by giving it an extra factor of ﬁ bandwidth.

Further, because TCP is a distributed algorithm, it is difficult for the algorithm to continually
utilize all of the available bandwidth. For the AIMD algorithm, the total bandwidth used
varies linearly between B and B, where B is the capacity bandwidth of the bottleneck.
Therefore, TCP utilizes on average only % of the available bandwidth. It follows that

TCP needs a factor of ﬁ extra bandwidth to compete with any centralized algorithm.

Finally, an extra (1+ %) factor is required to compensate for the effect of other jobs arriving
and completing. Combining all of these factors, TCP needs to be given a factor of s =
(2+ 6)(#)(%)(1 + é) more bandwidth than the optimal scheduler is given.

In order for TCP to be competitive we must also either give each job the extra time of
a constant number of adjustment periods to adjust or require all the jobs to live at least
a constant number of adjustment periods. An adjustment period is the period between
consecutive adjustment points. Lemma 5 shows that the length of an adjustment period is
(alv;f ()5, where n’'(t) denotes the (average) number jobs alive under TCP during the period®.
Adjustment periods may vary in length, and so we make precise the notion of “the time of
a constant number of adjustment periods” below.

When a job first arrives, EQUI allocates it a fair share of the bandwidth. The optimal
scheduler may allocate all the bandwidth to the job with the shortest remaining work in
order to complete it quickly. In contrast, TCP forces the new job to start with a transmission
rate of zero. Nevertheless, a job’s allocation converges exponentially quickly to that given
by EQUI In particular a job needs to wait ¢ complete adjustment periods for its rate to be
at least a factor of 1 — 39 of that of EQUIL.

bandwidth
of session i ooo ooooo/‘
T oay Ger o T2 T3 Tieg "

c. T
m i m+l

time —>

a C
D; D;

da N
o' g

Figure 1: The time of a constant number of adjustment periods per jobs.

More formally, consider a set of jobs J = {J;}. Let 7;, 7 = 0,... be the times of the
adjustment points. Let ji denote the index of the first adjustment time 7(;s) after job J;
arrives, i.e. j¢ = min;{j | 7; > a;}. (See Figure 1.) Let D¢ denote the length of the first ¢
complete adjustment periods of job 4, i.e., D] T(jo+q) — Qi

A job may not get its fair share of the bandwidth in the last adjustment period when the
multiplicative constant (is close to zero. With this setting, all jobs drastically decrease
their transmission rate when the bottleneck reaches capacity. If a job completes shortly
after this adjustment, it does not have a reasonable allotment of bandwidth during this last
fractional adjustment period. Let ji denote the index of the last adjustment time 7;¢) before
job J; completes, i.e. j¢ = max;{j | 7; < ¢!'}. Let D§ denote the fractional time of this last

adjustment period, i.e. D§ = ¢ — T(je) -

Even when a job is neither arriving nor completing, we will see that having other jobs

°The length of an adjustment period is upper bounded by a (possibly large) constant, viz., U=B)B e

«
express this length in terms of nT (t) to demonstrate that the length is much smaller if there is a number of

jobs or sessions in progress.

arrive or complete may temporarily cause a job to receive less than its fair allotment of
bandwidth. We will have these other jobs “pay” for this. Let D!* and DI denote ¢ times
the complete length of the first and last adjustment periods that job J; is in, namely, let
an o (T(jlf_z) — T(jg—l)) and D?C oo q - (T(jf+1) - T(jf)).

def

Summing up, let D(J) = 3 c7(D¢ + D + Di* + DY) denote the sum of these times over
all jobs. Note that this is O(gq) adjustment periods per job. Our main result states that if
TCP is given the constant factor s more bandwidth and D(J) extra time to adjust, then

L(TCPs(J)) _ : 1 L(TCPs(J))-D(J) _
FOPT T DT = O(1). Equivalently we could write oPT) = O(1).

Note that in keeplng with [Edm99], our theorems are proved for general jobs — we allow
each job J; to have an arbitrary number of phases and each phase to have an arbitrary
nondecreasing sublinear speedup function I';;(b), representing the rate at which work is
executed for phase k of job i when allocated b processors. Thus, our results hold even if each
transmission request came with a specified upper and lower bound on the rate at which the
data could be transmitted or received.

Theorem 1 Leta >0, 3€[0,1),6 >0, ¢ > 1 be an integer, s = (2+¢)(3=5) (557) (1 +),
and J be any set of jobs in which each phase of each job can have an arbitrary sublmear-
nondecreasing speedup function. Let D(J) be the length of O(q) adjustment periods per job,

with each adjustment period being of length cmT +(—[3)0. For any non-fully parallelizable
phase job, give TCP(J) the speedup function g‘gigf k(D) whenever OPT(J) is given I'; 1 (b).

Alternatively, give the same speedup functions, but change the factor of (ﬁ) within s to %

(which is reasonable unless 3 is close to zero.) Then E(O%(TTICEP)S‘J{B(]) O (1 +)

Alternatively, we could require all jobs to live at least a constant number of adjustment
periods. In this case, the extra time to adjust is not needed because if each job lives for O(q)
adjustment periods, then

D(J) = > 0O(qg) adjustment periods
eJ

< 00 ¢ —w)

ieJ
' O(L(TCPL(T))).

Corollary 2 Let ¢ > 1 be an integer, J be any set of jobs in which each job lives for O(q)
adjustment periods and s = (2 + 6)(@)(@&)(1 +) Then

L(TCPs(T)) 1

copr =0 (1+2).

L(OPTy(J))

5.3 TCP converges to EQUI

We prove that TCP converges to EQUI by comparing what TCP and EQUI would allocate
on a job-by-job, moment-by-moment basis as jobs arrive and complete.

10

First, we prove that at all adjustment points, at least ¢ periods after a job arrives, the
bandwidth allocated by TCP to the job is at least a factor of (1 — 37) of what EQUI would
allocate given the same speed. Interestingly, at this point a job could still have a constant

fraction of the total bandwidth, §¢B, which might be considerably more than its share n‘;—%)-

We must wait O(logn+q) phases until we are sure that TCP allocates no more than a factor
(14 39) of what EQUI would allocate.

Theorem 3 Let ¢ > 1 be an integer, s be any value, and J be any set of jobs. For each
job Ji and for all times t = Tjeyq15, j = 0, br(t) > (1 — ﬁq)nfp—i), where b! (t) denotes the
bandwidth allocated by TCP(J) to job J; at time t and n" (t) denotes the number jobs alive

at this time. On the other hand, at all timest > T., 1osm) , , bT (1) < (14 7).
Jitogaym T4 n’'(t)

Note that nfp?t) is the amount that EQUI, would allocate to the job were it in this situation.

However, it may not be the amount ;—2 that EQUI,(J) does allocate at this time within its
computation on the set of jobs 7, because with different bandwidth allocations jobs may
complete at different times under TCP4(J) and EQUI (J) and hence the number of jobs
nT(t) and nF alive under them at time ¢ may be different. We use EQUI, vs EQUI(J) to
differentiate between “would” and “does”.

Proof of Theorem 3: Fix some job J;. We will classify each unit of bandwidth allocation
as either being adjusted or unadjusted depending on whether the bandwidth is allocated fairly
from this job’s J;’s perspective. We prove that the amount of adjusted bandwidth converges
exponentially to being all the bandwidth and then prove that our job J; is allocated a fair
share of the adjusted bandwidth.

When the job J; first arrives it is initially allocated no bandwidth. Hence, it considers all
bandwidth allocation to be unadjusted. When at a rate of o each job is allocated more
bandwidth, this new bandwidth allocation is considered to be adjusted.

At adjustment points, we assume that both the job’s adjusted and unadjusted bandwidth
allocations are decreased by this factor 5. At job J;’s first adjustment point, 7ja, the total
unadjusted bandwidth in the system is at most sB, this being the capacity of the bottleneck.
At each adjustment point, every job decreases its unadjusted bandwidth by a factor 5 and
never increases its unadjusted bandwidth again. Hence, at the time of job J;’s (¢ + 1)
adjustment point, 7je,,, the total unadjusted bandwidth in the system is at most 39sB. At
points of adjustment, the total bandwidth of any kind in the system is exactly the capacity
sB of the bottleneck. It follows that at time 7;s, the total adjusted bandwidth in the system
is at least (1 — 37)sB.

When job J; first arrives at time a;, no job has any adjusted bandwidth. At each point in
time, each job alive increases its adjusted bandwidth at the same rate a and hence they
continue to have the same amount. Jobs that arrive after our job J; may have less adjusted
bandwidth than J; and jobs that complete release all of their bandwidth, but these events
only make it better for J;. The point is that J; has at least as much adjusted bandwidth as
any other job. It follows that at time 7ja,,, the amount of adjusted bandwidth that J; has
is b7 () > (1— 57) 32

PUOR

11

We consider two strategies for dealing with a time delay of 6 before the senders adjust.
The above proof assumes the first strategy, namely that in which each sender decreases its
transmission rate to the fraction [of its current rate of sending data independent of how
much of the data is being lost. Now consider the second strategy, in which each sender
decreases its transmission rate to a fraction [of the current rate that data passes through
the bottleneck without being dropped. Here the rate at which a sender loses data affects its
next adjusted transmission rate. Define the transmission that is being lost as being neither
unadjusted nor adjusted so that during the 6 delay the total amounts of unadjusted and
adjusted bandwidth stay fixed. However, during this time, the adjusted bandwidth gets
shifted from the jobs/senders with more than their share to those with less. Though the
bottleneck is at capacity, each sender continues to increase its transmission rate. This is
considered adjusted bandwidth. Simultaneously the bottleneck increases the rate that the
sender’s transmission is lost, which decreases the adjusted bandwidth. The bottleneck is
assumed to drop each packet with a fixed probability. Hence, a sender’s rate of transmission
loss is proportional to its current transmission rate. Hence, senders with less than their share
of bandwidth lose less. This effect only helps to ensure that our job/sender J; has at least
its share of the adjusted bandwidth and helps to speed up the overall rate of convergence to
EQUI

For completeness, we will now give an upper bound on the bandwidth that an individual
job might be allocated. Suppose that initially a particular job has all sB of the bandwidth.

After ¢ adjustments, the job still has 3sB of the bandwidth. However, after 132%1(%) +q

adjustment phases, the unadjusted bandwidth has decreased to at most 6‘1”‘;—%). Hence,
b (t) < (1459705 W

While it may seem from Theorem 3 if we give TCP —== + times as much bandwidth, all jobs
get their fair share of the bandwidth, this does not hold, due to the arrivals and departures
of other jobs. For example, when jobs complete, it takes TCP some time to allocate the
freed bandwidth. In contrast, EQUI would instantly reallocate the freed bandwidth to the
existing jobs. We now bound the amount of time during which such a discrepancy occurs.
We will define Less(J) to be the total time over which TCPj allocates a job less bandwidth
than EQUI,, . would allocate, and prove that this is at most O(q) adjustment periods per
job, ie. Less(J) < D(J).

More formally, for each job J; and each adjustment period [7;,7j+1], we say that the job
during this period receives less allocation than EQUI,, . would give if the job’s average
transmission rate during this phase is less under TCP(J) than it would be under EQUI,_ .,
Le. AVEicr, oy 1]b (t) < Avgyg [741] f}i We consider the average over the phase, in order
to compensate for the fact that TCP (fecreases and increases the transmission rates each

phase.

Let Less; denote the sum of the lengths of all the adjustment periods during the life of job J;

for which the job receives less. Let Less(J) = Y;cs Less; denote the total time over which
a job is allocated less than its share.

Theorem 4 Let ¢ > 1 be an integer, J be any set of jobs and s = (2+e)(1_1
Then Less(J) < D(J).

D) (5 L+9)-

12

Proof of Theorem 4: First, we note that the worst case scenario occurs when the jobs
consist of phases that are either completely parallelizable or completely sequential. This was
proved in [Edm99] (See Lemma 1 in that paper); we do not reproduce the proofs here.

Now, we present a proof of this theorem when the jobs are fully parallelizable. Under
TCP4(J), a job may be allocated less than its fair share of the bandwidth at any point
during its life. We classify these times into three types based on whether they occur when
the job first arrives, in the middle of its life, or as it is completing. Let Less! denote the

amount of time ¢ € [a;, T(ngrq)] within job J;’s first ¢ adjustment phases that it is allocated

(2+€)B
nT(0)

the middle of its life, ¢ € [7(jo1q), T(jo)]. Finally, let Less; denote the same within the job’s
last adjustment phase, t € [7(;¢), ¢;]. Clearly, Less; = Less{ + Less;" + Less;.

Recall that D(J) = Yies7 (D¢ + D§ + D{* + D). Simply by definition, Less] < D¢ and
Less; < Df, because these are the times of the first ¢ and the last one adjustment phases
during which job J; is alive. What remains in proving Less(J) < D(J) is to prove that
Sieq Lessl < Sic (DI + D). This will not be proved on a job-by-job basis but on an
adjustment phase-by-adjustment phase basis with the jobs that are arriving and completing
“paying” for the jobs that are not.

less than (on average over the adjustment period). Let Less" denote the same within

=== jobs completing

—— jobsarriving
— ; »
obs passing through
— — = P 9 9

Figure 2: nj, nj, and n;’ denotes the number of jobs that respectively complete, arrive, and

pass through the adjustment period [7;, 7j41].

Consider some adjustment period at time [7;, 7;41]. Let n§ denote the number of jobs that
are active at the beginning of this period and which complete during it, n§ the number that
arrive during it and are active at the end of it, and n% the number that pass through the
entire period. We ignore the jobs that arrive and complete within the period. (See Figure 2.)
We will consider two cases.

Case 1: n§ +n§ > %né’.

The only jobs that can contribute to 3, 7 Less;" are the n¥ jobs that are passing through the
phase, because contributing jobs must be in the middle of their lives. These jobs may not
contribute anything either because they are allocated sufficient bandwidth or because they
are not actually in the middle of their lives. However, the most that they can contribute is

the full length of this adjustment period.

The nf+nj jobs that either complete or arrive during this adjustment period each contribute
q times the full length of this adjustment period to Y ;c 7 (D" + D{°).

13

It follows that the contribution of this adjustment period to 3;c 7 Less;" is at most nf - (7j41 —
7j), which because of the case assumption is at most q(n§ +n$) - (7531 — 7;), which is at most
the contribution of this adjustment period to >, 7 (D" + ch)

Case 2: nf +nj < n or more specifically n§ < qnp and nj <1

For this case, we Wlll prove that this adJustment period contrlbutes nothing to > icz Less;",
because all the jobs that are past their first ¢ adjustment phases are allocated on average at
least (2+6 7~ during this adjustment period [7j, Tj+1]. Consider any such job J;.

By deﬁnltlon, we know that the number of jobs alive at the beginning of the phase is

nl = ng + nf. Hence, by Theorem 3 we know that immediately before this beginning

75

bandwidth. However,

adjustment point ¢ = 7;, job J; is allocated at least (1 — 3%)-2 C+ 5
J

being an adjustment point, the job decreases its transnnssmn rate by a factor of 3. Hence
the rate at the beginning of the phase is 5(1—(9)-2 By the assumption of the claim, this
is at least G(1 — () = [(1 — 6‘1)(1+11/q)53 Slmllarly, the number of jobs alive at the
end of the phase is nT = nj +nf and hence at this time the bandwidth J; is allocated is at

T+1

least (1—/37) ,ff : > (1—ﬂq)(1+11/q)33 During the phase, the allocation to job J; is increased

linearly. Hence the average (effectlve) transmission rate for the job during this phase is the
average of these beginning and the ending rates. This average is (@)(1 — B9()SB

c+P

1P+n

1+1/q

Because s is set to (ﬁﬂ)(1 ﬁq)(l +-)(2 +€), this average transmission rate is at least (2+E)B.

(Note that having a ¢ time delay Whlle the bottleneck stays at capacity only helps thls
average.)

We must now bound what EQUI,,, would allocate jobs. We know that for each point in

time ¢ during this phase, the number of jobs n”(t) alive is at least n , because by definition
this is the number that passes through the phase. It follows that that thls average rate @tgB

J

that TCP4(J) allocates job J; is at least the amount (2+6 that EQUI,, . would allocate at

any point in time t € |75, 7j41] during the adjustment perlod Hence job J; does not receive
less during this phase and hence this adjustment period contributes nothing to > ;c 7 Less;".

From these two cases, we can conclude that >,c 7 Less]" < > ;c7(D{* 4+ DJ°) and hence that
Less(J) < D(7).

5.4 Proof of the competitiveness of TCP

In this section, we prove Theorem 1, i.e., TCP, is competitive when given both extra band-
width and extra time to adjust. This is done by proving that it is competitive against
EQU I, which we already know is competitive against the optimal scheduler O PT}.

Proof of Theorem 1: Given any job set 7, we construct another set of jobs J’ and follow
the following proof “outline”.
L(TCP(T))
L(OPT,(9)) + D(J)

14

_ LEQUILY)
~ L(OPTy(J}.r)) + LIOPT(TLy,))

- o}

First, we need to prove the inequality L(TCP,(J)) = L(TCP,(J")) < L(EQUL,, (J")).
The set of jobs J' is designed specifically so that TCP4(J) and TCP(J’) are identical, yet
TCP,(J') always has completed at least as much as EQUI,_ (J) on every job. By definition,
TCP4(J) allocates more bandwidth to jobs then EQUI, . would allocate in all adjustment
periods except for those during which the job receives less. J' is designed to be exactly the
same as J except that the work completed during these less adjustment periods is deleted
and replaced with a sequential phase lasting the length of the period. Sequential phases have
speedup functions g, namely I'(b) = 1. No scheduler can get ahead on a sequential phase
of a job, because no matter how much resource (here the resource is the bandwidth and not
processors), the phase gets completed at a fixed rate. By design, the computation times do
not change from TCP4(J) to TCP4(J’) and hence L(TCP4(J)) = L(TCP4(J’)). Lemma 1
below formally proves that

TCP,(J’) is never behind EQUI,, () on any job and so its user-perceived latency (flow
time) is competitive, i.e. L(TCP4(J")) < L(EQUI,, (J')). This gives the first inequality
required in the above proof outline.

By definition, J,, and J},, contain respectively only the sequential and the non-sequential
phases of jobs in J'. The inequality L(OPT,(J)) > L(OPT;(J,,,)) holds since J has more

work than J’

par-

The last inequality that needs to be proved is D(J) > Less(J) = L(OPT(JL,)).- By
definition, £(OPT,(J,,)) is the flow time of this set of purely sequential jobs under the
optimal scheduler. Independent of the bandwidth allocated, this is simply the sum of the
sequential work in each job. By design this is the total time that TCP(J) allocates a job
less bandwidth than EQUI, ., would allocate during a phase, which by definition is Less(J).
Hence, L(OPT (JL,,)) = Less(J). Finally, Theorem 4 proves that Less(J) < D(J). This
completes all the inequalities required in the proof outline above. Il

Lemma 1 L£(TCP,(J")) < L(EQUL,, (J)).

Proof of Lemma 1: TCP,(J’) allocates more bandwidth to the non-sequential phases
than EQUI,_ . would allocate. We must now prove that this is also more than EQUI,, .(J")
actually does allocate. We prove by induction on ¢ that at each point in time TCP(J’)
has completed at least as much work on each job as EQUI, . (J")), i.e., L(TCP,(J")) <
L(EQUL, . (J')). We observe that this also bounds the number of jobs active at time ¢,
i.e. nT(t) < nf. Consider the next time instance. If the next phase of a job in J’ is
non-sequential then it must be completed under TCP4(J’) during an adjustment period
during which the job does not receive less allocation than (3}2;9 that EFQU I, . would give

in the same circumstances. By the induction hypothesis, n’ (t) < nf and hence the job does
not receives less allocation than (2:?3, which is what FQUI,,.(J') does allocate. On the

other hand, if the next phase of atjob is sequential, the job completes at the same fixed

15

rate, irrespective of how much bandwidth is allocated to the job. Hence, we conclude that
TCP4(J') completes at least as much work on each job as EQUIL, (J')) for the next Ot
time. This completes the inductive proof. ll

The last inequality in Theorem 1 follows directly from the competitiveness of EQUI, which
was proved in the following theorem in [Edm99] and improved slightly [EdmO1] in order to
be used here. Also, [EdmO01] allows the optimal scheduler to complete the fully parallelizable
work independently from the sequential work.

Theorem 5 ([EdmO1]) Let J be any set of jobs in which each phase of each job can have
an arbitrary sublinear, nondecreasing speedup function. Then

LEQUI,, (7))
2L(0OPT(J))
3 LEQUI,, (7))
= L(OPT(Jpar)) + LIOPT(Tseq))
< 0(+7),

where JTpar and Jseq contain respectively only the non-sequential and the sequential phases of
the jobs J .

5.5 Delayed Feedback

In this section, we consider the impact of delayed feedback, i.e., the situation when § > 0.
The primary impact of the delayed feedback is an increase in the number of packets that
get lost. This loss is caused by the senders overshooting their fair share of the bandwidth
by continuing to additively increase their sending rates during the ¢ time delay that elapses
before they detect that packets are being lost.

Lemma 2 The number of packets lost is %5204 per job (on average) per adjustment period,

for a total of %52a2(nT(t))2(1_lﬁ)B lost per time unit.

Proof of Lemma 2: If each sender were to instantly learn when the bottleneck is at
capacity, they could back off before there was any need for packets to be lost. However, if
there is a delay of d in time before the senders learn this, then during that time packets are
lost. During this § delay, when there are n”(t) senders, each increasing their transmission
rate at the additive rate of a;, the amount that the total transmission is over the bottleneck’s
capacity increases from zero to an® (t)6. All of this excess transmission, amounting to a total
of %anT(t)62, is lost. This repeats every adjustment period. By Lemma 5 an adjustment

. an™ (t)
period occurs =58

times per time unit. Hence, the total packet loss per time unit is
O[TLT

San (8)62 - G250 = 30%a*(n” (1)) * =55 B

Somewhat surprisingly, the bandwidth utilization of TCP is increased by increasing the delay

time 9.

16

Lemma 3 When all the senders adjust at the same time, TCP utilizes on average only a
T
B (’)(5%&)) fraction of its bandwidth (for small §).

Proof of Lemma 3: When all the senders simultaneously decrease their transmission rate,
the entire capacity of the bottleneck is no longer being utilized. Increasing linearly between
BB and B utilizes on average % of the bottleneck. Having a ¢ delay before the senders
decrease their rate increases the average bandwidth utilization for two reasons. The first is
that during this ¢ delay, though packets are being lost, the entire bandwidth is being utilized.
The second is that, with the first strategy, the transmission rate of data sent increases above
the capacity of the bottleneck before it is adjusted. For relatively small ¢, both of these

effects increases the average utilization from % by an additive amount of O(¢ #) |

Lemma 4 If one sender has a longer delay 6 before adjusting than other senders, then the
rate at which it sends data will be the same, but it will experience less packet loss than the
other senders.

Proof of Lemma 4: The sender with the longer delay § uses the same parameters o and
3 as the other senders and has the same time |7;.; — 7;| between adjustments. Hence, the
rate that it transmits will increase and decrease in the same way, except shifted forward in
time. This will mean that this sender is having its peak transmission rate at a latter point
in time after the other have already decreased their rates. It follows that this sender will
have less packet loss. H

5.6 Tradeoffs with settings of the TCP parameters o and [

We will now describe the tradeoffs involved in choosing the parameters a and . The key
effects are as follows. Setting the multiplicative constant [is a tradeoff between TCP’s
utilization of the bandwidth and the rate of the convergence of TCP to EQUI. These effects

are reflected in Theorem 1 by the extra speed s = (2+¢)(1_16q) (%)(1 + é) and the extra time

D(J) = O(%=L5 1 6) required by TCP to be competitive. Setting the additive constant a

anT'(t)
is a trade off between the amount of packet loss and the rate of the convergence.

The following lemma derives the dependence of the length of an adjustment period on o and
(. Large adjustment periods decrease the frequency of adjustments, but short adjustment
periods decrease the time D(J) that jobs must wait until they gets their fair allocation of
bandwidth.

Lemma 5 The length of an adjustment period is |1j11 — 7| = (;;Tﬁ()g +(1—03)d, where n™(t)

denotes the (average) number jobs alive under TCP during the period.
Proof of Lemma 5: At the point in time when the bottleneck reaches capacity, the total

bandwidth allocated to jobs is clearly the bottleneck’s capacity B. If there is a delay of d
in time before the senders detect packet loss, then during this time each sender continues

17

to increase its transmission rate at the additive rate of ««. The total transmission rate after
this delay will be B + an” (t)J.

We consider two strategies that TCP might take at this point. The first strategy is for the
sender to decrease its transmission rate to the fraction (of its current rate of sending data.
Doing this would decrease the total transmission rate to (B + an” (t)d). (It is problematic
if this delay ¢ is so big that this adjusted rate is still bigger than the capacity B of the
bottleneck.) The second strategy is to decrease its transmission rate to a fraction [of the
current rate that data passes through the bottleneck without getting dropped. Doing this
would decrease the total transmission rate to only #B. (Here there is no limit on how large
the delay § can be.)

With either strategy, the total bandwidth allocated continues to increase at a rate of an? (t).

The time required for the total to increase again to B is % in the first strategy

and only & —(t in the second. The total length of the adjustment period is this plus the §

delay time, which is either |7j41 — 75| = (olmT()t) (1=) or |74 — 7] = =28 y + 0. H

an®'(t

The following two results prove our intuitive expectation about the factors that make TCP
strictly less efficient than EQUI, viz., the conservative manners in which sending rates are
increased or decreased by TCP, and the delay in adjusting to changes in fair allocation of
bandwidth that results from it.

Lemma 6 The scheduling algorithm TCP becomes precisely the scheduling algorithm EQUI
in the limit as 0 — 1, a — o0, and § = 0.

Proof of Lemma 6: With « increased towards infinity, TCP converges instantly to
EQUI. This instantly-converging TCP still decreases its bandwidth allocation by a factor of
[each adjustment point for an average total bandwidth utilization of %B . Increasing the
multiplicative constant 3 towards 1 increases this utilized bandwidth towards the full B. Il

Lemma 7 For the extreme parameter settings f — 1, a — oo, and 6 = 0, when TCP is pre-
cisely EQUI, Theorem 1, which bounds the competitiveness of TCP, is tight with Theorem 5,
which bounds the competitiveness of EQUI.

Proof of Lemma 7: By setting q = = 6)2 and increasing 3 to one, the extra bandwidth
=2+ ¢ (= 6q)(5+1)(1 +) required in Theorem 1 goes to s = (2 + €) in the limit. This

is premsely the extra speed that EQUI needs. The extra time D(J) is O(q) adjustment

periods per job, which is w = O(q - (inf())). By setting a = ¢ and increasing [to one, this

4844
56+3 [

and /or the new factor of % within s both disappear with § = 1. |

goes to zero in the limit. Finally, the required change k(b) in the speedup function

18

References

[AB02]

[BEYO8]

(CJ89]

[DGSO1]

[Edm99)]

[EdmO1]

[Edm04]

[EP01]

[FJ93]

[Flo91]

[HSMKO93]

[Jac88]

[JE03]

[JT01]

Sanjeev Arora and William Brinkman. An optimal online algorithm for a band-
width utilization problem. In Proceedings of the thirteenth annual ACM-SIAM
Symposium on Discrete Algorithms, pages 535-539, 2002.

A Borodin and R El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

D.M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks. Computer networks and ISDN systems,
17(1):1-14, 1989.

Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of
the tcp acknowledgment delay problem. J. ACM, 48(2):243-273, 2001.

Jeff Edmonds. Scheduling in the dark. In ACM Symposium on Theory of Com-
puting, pages 179-188, 1999.

Jeff Edmonds. Scheduling in the dark — improved results: manuscript. available
at http://www.cs.yorku.ca/~jeff/research, 2001.

Jeff Edmonds. On the competitiveness of TCP within a general network. In
Proccedings of Latin American Theoretical Informatics, 2004. available at http:
//www.cs.yorku.ca/~jeff /research /tcp.

J. Edmonds and K. Pruhs. Broadcast scheduling: When fairness is fine. In
Accepted for publication in SODA 2002, 2001.

Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413, 1993.

S. Floyd. Connections with multiple congested gateways in packet-switched

networks, part I: One-way traffic. Computer communications review, 21(5):30—
47, October 1991.

Thomas R. Henderson, Emile Sahouria, Steven McCanne, and Randy H. Katz.
On improving the fairness of tcp congestion avoidance. In Proceedings of IEEE
Globecom ‘98, volume 1, pages 539-544, 1998.

V. Jacobson. Congestion avoidance and control. ACM Computer Communication
Review; Proceedings of the Sigcomm 88 Symposium in Stanford, CA, August,
1988, 18, 4:314-329, 1988.

Patrick W. Dymond Jeff Edmonds, Suprakash Datta. Tcp is competitive against
a limited adversary. In SPAA, pages 174-183, 2003.

R. Johari and D. Tan. End-to-end congestion control for the internet: delays
and stability. IEEE/ACM Transactions on Networking, 9:818-832, 2001.

19

[KelO1]

[KKPS00]

[KMTO8g]

[KPOO]

[KR00]

[LM97]

[Mas02]

IMO99]

[MPT94]

[MR95)

IMSMO97]

[OKMOY6]

[PFTKSS)]

[PG94]

F. Kelly. Mathematical modelling of the internet. In Bjorn Engquist and Wilfried
Schmid (Eds.), Mathematics Unlimited — 2001 and Beyond. Springer, 2001.

R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker. Optimization prob-
lems in congestion control. In IEEE Symposium on Foundations of Computer
Science, pages 6674, 2000.

F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. In Journal of the Operational
Research Society, volume 49, 1998.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as Clairvoyance.
Journal of the ACM, 47(4):617-643, 2000.

J. Kurose and K. Ross. Computer Networking: A top-down approach featuring
the internet. Addison-Wesley publishing company, 2000.

T.V. Lakshman and U. Madhow. The performance of networks with high
bandwidth-delay products and random loss. IEEE/ACM transactions on net-
working, 5(3), 1997.

Laurent Massoulie. Stability of distributed congestion control with heterogeneous
feedback delays. IEEE Transactions on Automatic Control, 47:895-902, 2002.

A. Misra and T. Ott. The window distribution of idealized TCP congestion
avoidance with variable packet loss. In Proceedings of INFOCOM, pages 1564—
1572, March 1999.

R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical
computer science (Special issue on dynamic and on-line algorithms), 130:17-47,
1994.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of
the TCP congestion avoidance algorithm. Computer communications review,
27(3):67-82, July 1997.

T. Ott, J. Kemperman, and M. Mathis. The stationary behavior of ideal TCP
congestion avoidance, August 1996. ftp://ftp.bellcore.com/pub/tjo/TCPwindow.

ps.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: a
simple model and its empirical validation. In Proceedings of SIGCOMM, pages
303-314, 1988.

Abhay K. Parekh and Robert G. Gallagher. A generalized processor sharing
approach to flow control in integrated services networks: the multiple node case.
IEEE/ACM Transactions on Networking, 2(2):137-150, 1994.

20

[PSTWO97] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

[Ste94]

[TMW97]

critical scheduling via resource augmentation. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, pages 140-149, May
1997.

W. Richard Stevens. TCP illustrated : volume I. Addison-Wesley publishing
co., 1994.

Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area internet traffic
patterns and characteristics. IEEE Network, 11(6):10-23, November 1997.

21

Appendix

A quick overview of TCP

TCP implements reliable, bidirectional communication between two applications running on
any host in the internet. It provides flow control (i.e. ensures that the sender’s transmission
rate is not high enough to overwhelm the receiver at any time step) and congestion control.

Once a TCP connection is established, the sender begins sending packets. Packets are labeled
by sequence numbers. When a TCP source sends a packet, it starts a timer. When a packet
reaches its destination, the receiver sends back an acknowledgment to the sender with the
highest in-order sequence number it has received (duplicate acknowledgments could be sent
if packets do not arrive in-order). If the sender does not receive an acknowledgment for the
packet before the timer expires, then TCP infers (potentially incorrectly) that the packet is
lost.

At the heart of TCP is the congestion control algorithm which tries to ensure that the network
is not congested by adjusting transmission rates dynamically. TCP does not deal with
sending rates explicitly; the sending rate is controlled by two windows that TCP maintains.
The congestion window is the number of packets that the sender can send out without waiting
for any of them to be acknowledged. The flow control window is (an estimate of) the number
of packets the receiver can accept at some point in time. TCP computes the minimum w of
these two values and sends at most w packets out before any packet is acknowledged.

There are two modes in which TCP congestion control operates: slow start and congestion
avoidance. TCP uses slow start whenever it is not sure how fast it should send: at the
beginning of a connection, after idle periods, and after extreme congestion. The congestion
avoidance mode is used when the sender is close to the rate at which it should send packets.
When TCP operates in this mode, it attempts to adjust the bandwidth of a session fast
enough so that it eventually utilizes any new bandwidth that becomes available, but slow
enough that it will not cause congestion.

In slow start, the congestion window starts at some minimum value and grows exponentially
over time until a timeout occurs or the window size crosses the slow start threshold. If there
is a timeout, the slow start threshold is set to half the current congestion window size and
the congestion window size is reset to 1. If the window size crosses the slow start threshold,
TCP enters the more conservative congestion avoidance mode [Jac88]. During this mode,
TCP increases its congestion window linearly, until it gets a timeout or three successive
acknowledgments for the same packet (i.e. a triple duplicate acknowledgment).

Interestingly, TCP interprets a timeout as an indication of severe congestion and a triple
duplicate acknowledgment as an indication of mild congestion. If a sender receives a triple
duplicate acknowledgment, it sets its congestion window to half of its current value, but
remains in the congestion avoidance mode. On the other hand, a sender, on encountering
a timeout, sets the slow start threshold to half the current congestion window and sets
the congestion window to one, and enters the slow start mode. Since TCP increases the
congestion window exponentially in the slow start mode, a sender typically spends far less
time in the slow start mode than in the congestion avoidance mode. Therefore, the slow

22

start mode can be viewed as a transient phase in the running of TCP. It is worth noting
that our simplified model of TCP models the congestion avoidance mode.

In addition to the steps described above, TCP uses several strategies for maintaining timers
and keeping alive idle connections. There are also several flavors of TCP in use, including
Reno, Tahoe and Vegas. We refer the interested reader to [Ste94] for more details.

23

