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ABSTRACT

The paper provides theoretical justification for the “3ipéicity
property” observed in protein coding regions within geno®NA
sequences. We propose a new classification criteria impgaypon
traditional frequency based approaches for identificaifaoding
regions. Experimental studies indicate superior perfogeaom-
pared with other algorithms that use the 3-periodicity prop

1. INTRODUCTION

Automated identification of protein coding regions in gefmBNA
sequences is a fundamental step in the computational diamta
of genes. Most gene prediction algorithms exploit shortjeacor-
relations in the nucleotide arrangement within codingarsgi In
particular, the discrete Fourier transform (DFT) of a piroteod-
ing region of lengthN exhibits a significant peak at frequency
(k = N/3). No such peak is observed in noncoding region. This
characteristic, referred to as the 3-periodicity propgtty?], has
been used in [1] and [3] to design gene prediction algoritims
this paper, we provide theoretical justification for theeSipdicity
property by defining a new parameter referred to as the pasiti
count function (PCF), which measures the number of timderdif
ent nucleotides appear in the three phases within a DNA codon

A second contribution of the paper is to improve the DFT
based gene prediction algorithm [3].

— In the proposed algorithm, the DFT spectrunkat N/3

2. NUMERICAL REPRESENTATION

Viewed at the primary level, a DNA sequenb¥i] consists of four
nucleotides{A, T, C, G} € .A. The DNA sequence is mapped into
binary signalsA[:], T'i], C[¢] and G[i], which indicate the pres-
ence or absence of these nucleotides at locatibar example, the
binary signalA[i], attributed to nucleotidd, takes a value of 1 at
i =1, If D[io] = A. Else,A[i,] is 0. For the DNA sequence

DJi] [ATGACTAAGAGATCCGG®)

the numerical representation is given by

Al = [1001001101010000 0]
Tl = [0100010000001000 0
Clii = 0000100000000110 0]
andG[i] = [0010000010100001 1]

We derive the properties for binary signd[i] in terms of a new
parameter, position count function, which is defined next.
Position Count Function: A binary signalA[i], (0 < ¢ < N)
is parsed into nonoverlapping words of length(3 < w < N).
The position count function (PCF) fot[] is defined as

(2

> Afwi+ ] for (0 < s < w),

=0

Cia(s) )

is computed by parsing the DNA sequence in codons and and counts the number of 1's at phasi thew-bit parsed words.
counting the number of different nucleotides at each ofthre For the DNA sequence given in (103 (0) = 4, C5(1) = 1,

phases. The approach is Of V) and is computationally
efficient than the fast Fourier transform (FFT).

The proposed algorithm normalizes the DFT spectrum with
average energy present in the DFT coefficients. The resul
ing parameter, referred to as the signal-to-noise ratio, pr

vides an automated approach in predicting coding regions.

Reference [3] applies rectangular windows to parse the DNA
sequence, which causes abrupt truncations of the DNA se- _
quence and results in extraneous peaks in the DFT spec-proof: By definitionZ[N/g] = ZN:()l A[i]e*ﬂTﬂ

trum. We show that the Bartlett window provides improved
results and removes most of these extraneous peaks.

Section 2 defines the position count function and derive®itapt
properties for binary sequences. Section 3 provides ttiealgis-
tification for the 3-periodicity property, while sectiondtioduces
the proposed DFT based splicing algorithm. Section 5 ptesam
experimental results. Finally, in section 6, we concludeghper.
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andC4'(2) = 1. We now present important properties for binary
sequences in terms of the PCF’s. B
Theorem 1. The magnitude of the DFAk] of the binary signal

t. Ali], at discrete frequendy = N/3, is given by

AN/E = 5 [0~ G (1) + () - ¢ (2)?
+ (€32 -3 (0)?]. 3
= , which is re-
arranged as
AN = Y Alle T Y Afle T 4
n=0,3,... n=1,4,...

Term 1 Term 2

+ > Ale %)
n=2,5,...

Term 3



Substitutingn = mw in Term 1,n = mw + 1 in Term 2, and
n = mw + 2 Term 3, leads to the following expression

AN/ = CAO) +e T Ch() + e 5 ),

which simplifies to Eq. (3). [ |
Theorem 1 computes the magnitude of the DFT coefficﬁ{m/?,]
directly from the PCF’s without any complex algebra. It jo®s

an efficient algorithm for computingZ[N/3]|, which has a com-
putational complexity of Q). We also observe that Eq. (3) is a
symmetric function of the PCF’s. The differences in the PCF’s con-
tribute to| A[V/3]| rather than the direct number of counts. The
following two corollaries are derived directly from Theardl.
Corollary 1.1: If the PCF’s for the 3-bit parsed words are equal,
i.e.,Cs(0) = C4(1) = C4(2), then DFTA[N/3] of sequence

Ali] is zero. If the PCF'’s are not equal, théfiN /3] # 0. [ |
Coroallary 1.2: Any permutation of the 3-bit parsed words in a
binary sequence does not change the valyet/3]|. [ |

We now state Theorem 2, which expresses the average valoe of t
DFT coefficients in terms of the PCF’s. Theorem 2 is derivedgis
the Parseval’s property. To save on space, its proof is chided.

Theorem 2: The average valuka»?{éll\ﬂ2 of the squared magnitude,
|A[k]|?, (1 < k < N) of the DFT of a binary sequence (i.e., ex-
cluding the dc componem[0]) is given by

(N - i c{j@))

s=0

|~(1) 2 _

avl — (Nl_l) ZCS(S) (5)

s=0

Next, we generalize Theorem 13a:-bit parsed words. [ |

Theorem 3: The magnitude of the DFﬁ[k] of the binary signal
Ali], at discrete frequendy = N/3m, is given by

m—1
N

i) - S

p=0

+ 67?_7’7503Am(3p+2)} .

j2m
[Co(3m) + 57 C(3p+ 1)

(6)

The following corollary results directly from Theorem 5. |}

Corollary 3.1: The magnitude of the DFﬁ[N/Bm] in a 3m-bit
parsed binary sequence is zero if

Cffm(s) = Cffm(s + 3) == Cffm(s + Sk:) (7)

for (0 <s<2)andk =0,1,2,...suchthat(s + 3k) <w. N
The above results are also valid for the DFT], C[k], andG k]
of the binary signalg[i], C[i], andG[i]. In the next section, we
use Theorems 1-3 to prove the “3-periodicity” property obse
in the DNA sequences.

3. 3-PERIODICITY PROPERTY
The 3-periodicity property [2] states that the spectrakgye
- A~ - - -
IST]|* = |AK])? + |T[K]® + |C[K]]® + |GIKI, (8)

derived from the DFT’s of the four binary signals represamta
DNA protein coding region of lengthV, exhibits a peak at discrete
frequencyk = N/3. No such peak is observed in the spectral en-
ergy of noncoding regions. To verify the 3-periodicity peoty, we
report two observations made from protein coding and noingod
regions. Though these observations are verified for a nunfber

Position A C G T
0 0.3189 | 0.3291| 0.4545| 0.2488
1 0.3642 | 0.3664 | 0.2382| 0.3523
2 0.3168 | 0.3044 | 0.3073| 0.3989

Table 1. Fraction of nucleotides at locatio(s = 0, 1, 2) in words
of length @ = 3) for coding regions obtained from C. elegans.

Position A C G T
0.1603 | 0.1647| 0.2271| 0.1241
0.1587| 0.1645| 0.2274 | 0.1247

0.1825| 0.1824| 0.1191| 0.1771
0.1818 | 0.1840| 0.1192| 0.1751
0.1583 | 0.1517| 0.1551| 0.1994
0.1585| 0.1527| 0.1522 | 0.1995

QY N|| B || WO

Table 2. Same as Table 1 but for locatiofs = 0,1, ...
coding DNA words of length {v = 6).

,5) in

eukaryotic organisms, we include results from chromosote |
of C. elegans (Accession no. N@3281) downloaded from the
NCBI database [5]. Tables 1 and 2 are constructed from protei
coding regions (cumulative length of about 4 million nut¢ides),
while Tables 3 and 4 are based on noncoding regions (cumilati
length of about 9 million nucleotides).

Observation 1: Whencoding regions are parsed in words of length
w that is a multiple of 3w = 3m, we observe that:

Part I: The PCF'’s for nucleotidé

Ca(s) ~Cid(s+3) ~ ...~ Cia(s+3k), 9)
fork =0,1,2,...suchthats + 3k) < w.
Part I1: The PCF's for nucleotidé&
Car(s) # Cn(s + 1) # Cia(s +2), (10)

for (0 <s <w-—3). [ |
Observation 1 is also valid for the PCES (s), CS (s), andC (s).
Table 1 records the PCF’s for the four nucleotides withiniicgd
regions parsed in words of length = 3. In each case, the PCF
is expressed as a fraction of the total number of the nudeaif
the type being counted in the PCF. In Table 1, we observeleat t
entries in each column are significantly different from eattter.
This is in accordance with Observation 1, which states that t
PCF'sC,,(0),C;, (1), andC;,(2) are not equal fotw = 3.

Table 2 repeats the earlier experiment performed in Talbde 1 f
protein coding regions except that the DNA segment is parsed
words of lengthw = 6. To show the similarity between positions 0
and 3, 1 and 4, and 2 and 5, we have rearranged the order okthe si
rows. We observe that the PCE$ (0) = C.;(3),C;, (1) = Cy (4)
andC,,(2) = C,(5). However,C;,(0) # C;,(1) # C;,(2) and
C.(3) # C;(4) # Cy,(5). This verifies Observation 1.
Observation 2: The PCF's obtained by parsimgncoding regions
in words of lengthw are equal. Explicitly, for nucleotida,

Ca0)~Co()~ ...~ Ch(w—1), (11)

for (3 < w < N). Eqg. (11) is also valid for the PCF’s for nu-
cleotidesC, G, andT. [ |
Tables 3 and 4 record the normalized PCF'’s for nucleoties,

T, andGat locations 0 tdw — 1) for DNA words of lengthsy = 3
andw = 7 parsed from noncoding regions obtained from the C. el-
egans dataset. The PCF’s for each nucleotide are equalrn@bse
tion 2 is, therefore, confirmed.



Position A C G T
0 0.3334 | 0.3331| 0.3336| 0.3334
1 0.3333 | 0.3331| 0.3339| 0.3333
2 0.3333 | 0.3338| 0.3325| 0.3333

Table 3. Fraction of nucleotides at locatiofs = 0, 1, 2) in words
of length v = 3) for noncoding regions obtained from C. elegans.

A
0.1451
0.1422
0.1420
0.1428
0.1423
0.1426
0.1428

C
0.1430
0.1420
0.1429
0.1425
0.1441
0.1426
0.1429

G
0.1420
0.1426
0.1449
0.1428
0.1427
0.1424
0.1425

T
0.1420
0.1453
0.1424
0.1432
0.1422
0.1429
0.1419

Position
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Table 4. Same as Table 3 except for locatigs= 0,1, ...
noncoding DNA words of length v = 7).

7)in

Explanation: Within a protein coding region, we show that:
(a) The value of the spectral ener§yk] is not zero ak = N/3.
(b) Elsewhere, except fdr = 0, the spectral energy[k] is zero.

To verify claim (a), we substitute = 0 in Part Il of Observation 1.
The results show that the PCEES (0), C (1), andC; (2) are not
equal. Under such conditions, Corollary 1.1 states thatDXth&
coeﬁicientsZ[N/i%] # 0. By a similar analysis, we can show that
the values of the DFT coefficien%[N/Zﬁ], 5[N/3], andé[N/B]
are also nonzero. Therefore, the spectral enggiy/3]|, defined

in (9), has a nonzero value withgoding regions.

We verify claim (b) next. Coupling Part | of Observation 1 wit
Corollary 3.1, shows that the DFA[k] equals zero for all fre-
guency components = N/3m subject toN being divisible by
3m. In cases wheré&V is not divisible by3m, we can always zero
pad the sequence such that the new len§th > N is divisi-
ble by 3m. By approximatingA[N/3m] with A[N; /3m] in such
cases, we conclude théﬁ{k] ~ 0 for all k except fork = 0 and
k = N/3. The same reasoning is extended to nucleofid€3 and
Gproving that|S[k]| = 0 for all values ofk except fork = 0 and
k = N/3 within proteincoding regions.

Finally, the value og[N/3] within noncoding regions, is shown to
be 0 by combining Observation 2 with Corollary 1.1. Colleely,
the above explanation proves the 3-periodicity property.

4. SPLICING ALGORITHM

Our splicing algorithm exploits the 3-periodicity properin de-
scribing the splicing algorithm, we use two binary signai$i]
and Wi]. Signal R[] is 1 if the nucleotide at location in the
DNA sequence is eithe® or C. Similarly, signaliW[i] is 1 if the
nucleotide at locationis eitherAor T.

Initialization: Set¢ = 0 to indicate the number of window.

Step 1. Apply a rectangular window of lengthV; to select the
first N1 nucleotides of the DNA sequence. In our experiments, the
length N of the parsing window is set to 351.

Step 2: For thel'th DNA subsequence obtained from step 1, com-
pute the values of the two binary signdt§i] and W |q].

Step 3: By parsingR|[i] andW [i], compute the PCF€4(s) and
C¥ (s), for (0 < s < 2). Use Theorem 1 to evaluate the DFT's,
R[N/3] andW[N/3] of binary signalsRk[:] andW [¢].

It is straightforward to show that the paramet&{N,/3]| is a

scaled version of the linear combinatijgh ﬁ[Nl /3]+BwW[N1/3]|,
used in [3]. Using parametdiz[N; /3]| eliminates the need to
computes, and,,.

Step 4: According to the 3-periodicity property, the spectral en-
ergy |1§[N1/3]|2 peaks within protein coding regions. However,
the values of these peaks vary significantly across DNA sp&ts
obtained from different organisms. We use

A |R[N./3)? R[N /3]
SNR/] 2 ~(|1)[2 1/J(1) - = | [~}1/) ]2| (12)
[Rav|* + [Way | 2| Ray|

as the classification criteria. Term&gy|> and || are the
average values of the squared magnitudes of the DRJK$ and

W k]. These values are computed using Theorem 2.

Step 5: The rectangular window is moved forward by 3 nucleotides
and the value of is incremented by 1. Starting from step 2, the
procedure is repeated till the entire DNA sequence is schnne
Step 6: Plot SNR/] as a function of. The peaks in the plot iden-
tify protein coding regions. To automate our classificativa use

a threshold valuey such that SNR] > 7 corresponds to protein
coding regions, while SNR] < 7 corresponds to noncoding re-
gions. The value of thresholgis computed in section 5.

Bartlett Window: The aforementioned algorithm uses a rectan-
gular window to partition the DNA sequence into subsequence
of length V;. Rectangular windows introduce discontinuities by
abruptly truncating the DNA sequences and tend to spread the
spectrum of the original DNA sequence in the frequency damai
This causes the power of the DFT leak over into adjacent fre-
guencies. To minimize the leakage, we use the Bartlett windo

wn] :{

to partition the DNA sequence. The proposed algorithm uses t
Bartlett window and involves steps 1-6 except step 3 iés] =
w[n]R[n] instead ofR[n].

2n

Ni—1
9_ _2n_
1—1

0<n<I(Ni—1)

In-D<n<m-1y 3

5. EXPERIMENTS

The experiments are designed to make three major pointst, Fir
we show that the use of the Bartlett window improves the perfo
mance of the splicing algorithm by removing the extraneaakp
introduced by abrupt truncations of the rectangular windsec-
ond, we determine the value of threshgltb classify the peaks in
SNR, (13), as coding versus noncoding peaks. Third, we uant
the performance of the proposed splicing algorithm.

Fig. 1 illustrates the differences between the magnitudes o
|§[N/3]|2 for the proposed splicing algorithm with rectangular
and Bartlett windows. Results from two different DNA seqces)
obtained from the C. elegans dataset, are included. Each DNA
stretch has two coding regions at positions enclosed wiligver-
tical dotted lines. The algorithm using rectangular wind&igs. 1(a)
and 1(c)) is not accurate as it produces peaks at wrong torsati
In Figs. 1(a) and 1(c), we also observe more than one pealnwith
a single coding region. On the other hand, the algorithmgusin



@ (b)

©) (d)

Fig. 1. Comparison of proposed splicing algorithm with rectangwindow (plots (a) and (c)) and the Bartlett window (pldis&nd (d)).

the Bartlett window (Figs. 1(b) and 1(d)) produces a singlakp
within each coding region. Figs. 1(b) and 1(d) removes themex
neous peaks observed with the rectangular window.

To determine the value of threshaldthat discriminates cod-
ing regions from noncoding regions, Fig. 2 plots the cuningat
distribution of the SNR for both coding and noncoding region
for the three organisms: Chromosome Il of C. elegans (Acces
sion number NG003281); Complete genome of E. coli (Accession
number NC002695); and Complete genome of Pirellula sp. (Ac-
cession number N©05027). The solid curve in Fig. 2 shows the
fraction of coding regions with SNR less than the abscissidewh
the dotted curve shows the fraction of noncoding regionk $itR
greater than the abscissa. We select a threshold valuefofaldrs-
tinguish between protein coding regions from noncodingoresg
Note that by setting = 1.75, Fig. 2 bounds the decoding capabil-
ity of the splicing algorithm to about 15% in correctly idéying
protein coding and noncoding regions.

To quantify the performance of the proposed algorithm, we
process protein coding regions in chromosome |l of C. elega
The chromosome has a total of 13783268 nucleotides with 8172
coding regions. The minimum length of coding regions is 2 nu-
cleotides, while the maximum length is 7204 nucleotidebl&a
lists the number of successfully detected coding regiamanged
in order of the increasing length. We observe that the perdioice
of the algorithm is better in detecting coding regions whesgths
are comparable to the window siz&{ = 351). For example,
coding regions with lengths equal to 250 nucleotides areecty
identified at a detection rate of about 80%. With larger codiz
gions, the detection rate improves even further. Howevéaenv
the length of coding regions is smaller than 150 nucleotities
DFT based splicing algorithm does not perform as well. Irhsuc
cases, the data extracted by the window contains both cadlidg
noncoding nucleotides. The “3-periodicity” condition is longer
valid and the DFT based algorithms are relatively inaceurht
terms of the detection of noncoding regions, the proposgd-al
rithm correctly identifies 7053 or roughly 86% of noncodireg r
gions.

6. SUMMARY

In this paper, we provide a theoretical justification for 8aperiodicity
property, which results in a significant peak within proteauing
regions of genomic DNA sequences. A new classification rizite
which normalizes the DFT spectrum with average energy ptese
in the DFT coefficients, results in an automated approachén p
dicting coding regions. In our experiments, the proposqu@ach
provides considerable improvement over other DFT based alg
rithms.
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Fig. 2. Cumulative distribution of SNR for both coding and non-
coding regions obtained from the C. elegans, E. coli, anellBia
sp. datasets. The solid curve corresponds to coding regibile
the dotted curve corresponds to noncoding regions.

Exons with length| Total Number| Total Detected
L > 100 7157 3004 (42%)
L > 150 4177 2513 (60%)
L > 200 2949 2080 (71%)
L > 250 2099 1648 (79%)
L > 300 1534 1270 (83%)
L > 350 1177 1010 (86%)
L > 400 919 826 (90%)

Table 4. Number of protein coding regions successfully detected.

7. REFERENCES

[1] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhat-
tacharya, and R. Ramaswamy, “Prediction of Probable Genes
by Fourier Analysis of Genomic Sequence€@mputer Ap-
plications in Biosciences, vol. 113, 1997, pp. 263-70.

V. R. Chechetkin and A. Y. Turygin, “Size-dependence of
Three-periodicity and Long-range Correlations in DNA Se-
guences,Physics Letters A, vol. 199, 1995, pp. 75-80.

D. Anastassiou, “Frequency Domain Analysis of Biomalec
lar Sequencespioinformatics, 2000, pp. 1073-81.

D. Kotlar and Y. Lavner, “Gene Prediction by Spectral &ot
tion Measure: A New Method for Identifying Protein- Coding
Regions,"Genome Research, vol. 13(8), 2003, pp. 1930-37.

National Centre for Biotechnology Information (NCB[Dn-
line]. Available:ht t p: / / ww. nchi . nl m ni h. gov/.

(2]

(3]
(4]

(5]



