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ABSTRACT

The paper provides theoretical justification for the “3-periodicity
property” observed in protein coding regions within genomic DNA
sequences. We propose a new classification criteria improving upon
traditional frequency based approaches for identificationof coding
regions. Experimental studies indicate superior performance com-
pared with other algorithms that use the 3-periodicity property.

1. INTRODUCTION

Automated identification of protein coding regions in genomic DNA
sequences is a fundamental step in the computational annotation
of genes. Most gene prediction algorithms exploit short range cor-
relations in the nucleotide arrangement within coding regions. In
particular, the discrete Fourier transform (DFT) of a protein cod-
ing region of lengthN exhibits a significant peak at frequency
(k = N/3). No such peak is observed in noncoding region. This
characteristic, referred to as the 3-periodicity property[1, 2], has
been used in [1] and [3] to design gene prediction algorithms. In
this paper, we provide theoretical justification for the 3-periodicity
property by defining a new parameter referred to as the position
count function (PCF), which measures the number of times differ-
ent nucleotides appear in the three phases within a DNA codon.

A second contribution of the paper is to improve the DFT
based gene prediction algorithm [3].

− In the proposed algorithm, the DFT spectrum atk = N/3
is computed by parsing the DNA sequence in codons and
counting the number of different nucleotides at each of three
phases. The approach is ofO(N) and is computationally
efficient than the fast Fourier transform (FFT).

− The proposed algorithm normalizes the DFT spectrum with
average energy present in the DFT coefficients. The result-
ing parameter, referred to as the signal-to-noise ratio, pro-
vides an automated approach in predicting coding regions.

− Reference [3] applies rectangular windows to parse the DNA
sequence, which causes abrupt truncations of the DNA se-
quence and results in extraneous peaks in the DFT spec-
trum. We show that the Bartlett window provides improved
results and removes most of these extraneous peaks.

Section 2 defines the position count function and derives important
properties for binary sequences. Section 3 provides theoretical jus-
tification for the 3-periodicity property, while section 4 introduces
the proposed DFT based splicing algorithm. Section 5 presents our
experimental results. Finally, in section 6, we conclude the paper.
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2. NUMERICAL REPRESENTATION

Viewed at the primary level, a DNA sequenceD[i] consists of four
nucleotides{A,T,C,G} ∈ A. The DNA sequence is mapped into
binary signalsA[i], T [i], C[i] andG[i], which indicate the pres-
ence or absence of these nucleotides at locationi. For example, the
binary signalA[i], attributed to nucleotideA, takes a value of 1 at
i = io if D[io] = A. Else,A[io] is 0. For the DNA sequence

D[i] = [A T G A C T A A G A G A T C C G G],(1)

the numerical representation is given by

A[i] = [1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0]

T [i] = [0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0]

C[i] = [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0]

andG[i] = [0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1].

We derive the properties for binary signalA[i] in terms of a new
parameter, position count function, which is defined next.
Position Count Function: A binary signalA[i], (0 ≤ i < N)
is parsed into nonoverlapping words of lengthw, (3 ≤ w < N).
The position count function (PCF) forA[i] is defined as

CA
w (s) =

b
N−1

w
c∑

i=0

A[wi + s] for (0 ≤ s < w), (2)

and counts the number of 1’s at phases in thew-bit parsed words.
For the DNA sequence given in (1),CA

3 (0) = 4, CA
3 (1) = 1,

andCA
3 (2) = 1. We now present important properties for binary

sequences in terms of the PCF’s.
Theorem 1: The magnitude of the DFT̃A[k] of the binary signal
A[i], at discrete frequencyk = N/3, is given by

|Ã[N/3]|2 =
1

2

[
(CA

3 (0) − CA
3 (1))2 + (CA

3 (1) − CA
3 (2))2

+ (CA
3 (2) − CA

3 (0))2
]
. (3)

Proof: By definitionÃ[N/3] =
∑N−1

n=0
A[i]e−

j2πn

3 , which is re-
arranged as

Ã[N/3] =
∑

n=0,3,...

A[i]e−
j2πn

3

︸ ︷︷ ︸
Term 1

+
∑

n=1,4,...

A[i]e−
j2πn

3

︸ ︷︷ ︸
Term 2

+

. . . +
∑

n=2,5,...

A[i]e−
j2πn

3

︸ ︷︷ ︸
Term 3

. (4)



Substitutingn = mw in Term 1,n = mw + 1 in Term 2, and
n = mw + 2 Term 3, leads to the following expression

Ã[N/3] = CA
w (0) + e−

j2π

3 CA
w (1) + e−

j4π

3 CA
w(2),

which simplifies to Eq. (3).
Theorem 1 computes the magnitude of the DFT coefficientÃ[N/3]
directly from the PCF’s without any complex algebra. It provides
an efficient algorithm for computing|Ã[N/3]|, which has a com-
putational complexity of O(N). We also observe that Eq. (3) is a
symmetric function of the PCF’s. The differences in the PCF’s con-
tribute to |Ã[N/3]| rather than the direct number of counts. The
following two corollaries are derived directly from Theorem 1.
Corollary 1.1: If the PCF’s for the 3-bit parsed words are equal,
i.e., CA

3 (0) = CA
3 (1) = CA

3 (2), then DFTÃ[N/3] of sequence
A[i] is zero. If the PCF’s are not equal, theñA[N/3] 6= 0.
Corollary 1.2: Any permutation of the 3-bit parsed words in a
binary sequence does not change the value of|Ã[N/3]|.
We now state Theorem 2, which expresses the average value of the
DFT coefficients in terms of the PCF’s. Theorem 2 is derived using
the Parseval’s property. To save on space, its proof is not included.
Theorem 2: The average value|Ã(1)

av|
2 of the squared magnitude,

|Ã[k]|2, (1 ≤ k < N) of the DFT of a binary sequence (i.e., ex-
cluding the dc component̃A[0]) is given by

|Ã
(1)
av|

2 =
1

(N − 1)

(
N −

w−1∑

s=0

CA
w (s)

)
w−1∑

s=0

CA
w (s). (5)

Next, we generalize Theorem 1 to3m-bit parsed words.
Theorem 3: The magnitude of the DFT̃A[k] of the binary signal
A[i], at discrete frequencyk = N/3m, is given by

Ã
[

N

3m

]
=

m−1∑

p=0

e−
j2πp

m

[
CA

3m(3p) + e−
j2π

3m CA
3m(3p + 1)

+ e−
j4π

3m CA
3m(3p + 2)

]
. (6)

The following corollary results directly from Theorem 5.
Corollary 3.1: The magnitude of the DFT̃A[N/3m] in a 3m-bit
parsed binary sequence is zero if

CA
3m(s) = CA

3m(s + 3) = . . . = CA
3m(s + 3k) (7)

for (0 ≤ s ≤ 2) andk = 0, 1, 2, . . . such that(s + 3k) < w.
The above results are also valid for the DFT’sT̃ [k], C̃[k], andG̃[k]
of the binary signalsT [i], C[i], andG[i]. In the next section, we
use Theorems 1–3 to prove the “3-periodicity” property observed
in the DNA sequences.

3. 3-PERIODICITY PROPERTY

The 3-periodicity property [2] states that the spectral energy

|S̃[k]|2
∆
= |Ã[k]|2 + |T̃ [k]|2 + |C̃[k]|2 + |G̃[k]|2, (8)

derived from the DFT’s of the four binary signals representing a
DNA protein coding region of lengthN, exhibits a peak at discrete
frequencyk = N/3. No such peak is observed in the spectral en-
ergy of noncoding regions. To verify the 3-periodicity property, we
report two observations made from protein coding and noncoding
regions. Though these observations are verified for a numberof

Position A C G T
0 0.3189 0.3291 0.4545 0.2488
1 0.3642 0.3664 0.2382 0.3523
2 0.3168 0.3044 0.3073 0.3989

Table 1. Fraction of nucleotides at locations(s = 0, 1, 2) in words
of length (w = 3) for coding regions obtained from C. elegans.

Position A C G T
0 0.1603 0.1647 0.2271 0.1241
3 0.1587 0.1645 0.2274 0.1247

1 0.1825 0.1824 0.1191 0.1771
4 0.1818 0.1840 0.1192 0.1751

2 0.1583 0.1517 0.1551 0.1994
5 0.1585 0.1527 0.1522 0.1995

Table 2. Same as Table 1 but for locations(s = 0, 1, . . . , 5) in
coding DNA words of length (w = 6).

eukaryotic organisms, we include results from chromosome III
of C. elegans (Accession no. NC003281) downloaded from the
NCBI database [5]. Tables 1 and 2 are constructed from protein
coding regions (cumulative length of about 4 million nucleotides),
while Tables 3 and 4 are based on noncoding regions (cumulative
length of about 9 million nucleotides).
Observation 1: Whencoding regions are parsed in words of length
w that is a multiple of 3,w = 3m, we observe that:
Part I: The PCF’s for nucleotideA

CA
w (s) ≈ CA

w (s + 3) ≈ . . . ≈ CA
w (s + 3k), (9)

for k = 0, 1, 2, . . . such that(s + 3k) < w.
Part II: The PCF’s for nucleotideA

CA
w (s) 6= CA

w(s + 1) 6= CA
w(s + 2), (10)

for (0 ≤ s ≤ w − 3).
Observation 1 is also valid for the PCF’sCT

w(s),CG
w (s), andCC

w (s).
Table 1 records the PCF’s for the four nucleotides within coding
regions parsed in words of lengthw = 3. In each case, the PCF
is expressed as a fraction of the total number of the nucleotide of
the type being counted in the PCF. In Table 1, we observe that the
entries in each column are significantly different from eachother.
This is in accordance with Observation 1, which states that the
PCF’sC∗

w(0), C∗
w(1), andC∗

w(2) are not equal forw = 3.
Table 2 repeats the earlier experiment performed in Table 1 for

protein coding regions except that the DNA segment is parsedin
words of lengthw = 6. To show the similarity between positions 0
and 3, 1 and 4, and 2 and 5, we have rearranged the order of the six
rows. We observe that the PCF’sC∗

w(0) = C∗
w(3), C∗

w(1) = C∗
w(4)

andC∗
w(2) = C∗

w(5). However,C∗
w(0) 6= C∗

w(1) 6= C∗
w(2) and

C∗
w(3) 6= C∗

w(4) 6= C∗
w(5). This verifies Observation 1.

Observation 2: The PCF’s obtained by parsingnoncoding regions
in words of lengthw are equal. Explicitly, for nucleotideA,

CA
w(0) ≈ CA

w (1) ≈ . . . ≈ CA
w (w − 1), (11)

for (3 ≤ w ≤ N). Eq. (11) is also valid for the PCF’s for nu-
cleotidesC, G, andT.
Tables 3 and 4 record the normalized PCF’s for nucleotidesA, C,
T, andG at locations 0 to(w−1) for DNA words of lengthsw = 3
andw = 7 parsed from noncoding regions obtained from the C. el-
egans dataset. The PCF’s for each nucleotide are equal. Observa-
tion 2 is, therefore, confirmed.



Position A C G T
0 0.3334 0.3331 0.3336 0.3334
1 0.3333 0.3331 0.3339 0.3333
2 0.3333 0.3338 0.3325 0.3333

Table 3. Fraction of nucleotides at locations(s = 0, 1, 2) in words
of length (w = 3) for noncoding regions obtained from C. elegans.

Position A C G T
0 0.1451 0.1430 0.1420 0.1420
1 0.1422 0.1420 0.1426 0.1453
2 0.1420 0.1429 0.1449 0.1424
3 0.1428 0.1425 0.1428 0.1432
4 0.1423 0.1441 0.1427 0.1422
5 0.1426 0.1426 0.1424 0.1429
6 0.1428 0.1429 0.1425 0.1419

Table 4. Same as Table 3 except for locations(s = 0, 1, . . . 7) in
noncoding DNA words of length (w = 7).

Explanation: Within a protein coding region, we show that:
(a) The value of the spectral energỹS[k] is not zero atk = N/3.
(b) Elsewhere, except fork = 0, the spectral energỹS[k] is zero.

To verify claim (a), we substitutes = 0 in Part II of Observation 1.
The results show that the PCF’sCA

w (0), CA
w (1), andCA

w (2) are not
equal. Under such conditions, Corollary 1.1 states that theDFT
coefficientsÃ[N/3] 6= 0. By a similar analysis, we can show that
the values of the DFT coefficients̃T [N/3], C̃[N/3], andG̃[N/3]

are also nonzero. Therefore, the spectral energy|S̃[N/3]|, defined
in (9), has a nonzero value withincoding regions.

We verify claim (b) next. Coupling Part I of Observation 1 with
Corollary 3.1, shows that the DFT̃A[k] equals zero for all fre-
quency componentsk = N/3m subject toN being divisible by
3m. In cases whereN is not divisible by3m, we can always zero
pad the sequence such that the new lengthN1 > N is divisi-
ble by3m. By approximatingÃ[N/3m] with Ã[N1/3m] in such
cases, we conclude that̃A[k] ≈ 0 for all k except fork = 0 and
k = N/3. The same reasoning is extended to nucleotidesT,C, and
G proving that|S̃[k]| ≈ 0 for all values ofk except fork = 0 and
k = N/3 within proteincoding regions.

Finally, the value of̃S[N/3] within noncoding regions, is shown to
be 0 by combining Observation 2 with Corollary 1.1. Collectively,
the above explanation proves the 3-periodicity property.

4. SPLICING ALGORITHM

Our splicing algorithm exploits the 3-periodicity property. In de-
scribing the splicing algorithm, we use two binary signals,R[i]
and W [i]. SignalR[i] is 1 if the nucleotide at locationi in the
DNA sequence is eitherG or C. Similarly, signalW [i] is 1 if the
nucleotide at locationi is eitherA or T.
Initialization: Set` = 0 to indicate the number of window.
Step 1: Apply a rectangular window of lengthN1 to select the
first N1 nucleotides of the DNA sequence. In our experiments, the
lengthN1 of the parsing window is set to 351.
Step 2: For the`’th DNA subsequence obtained from step 1, com-
pute the values of the two binary signalsR[i] andW [i].

Step 3: By parsingR[i] andW [i], compute the PCF’sCR
3 (s) and

CW
3 (s), for (0 ≤ s ≤ 2). Use Theorem 1 to evaluate the DFT’s,

R̃[N/3] andW̃ [N/3] of binary signalsR[i] andW [i].
It is straightforward to show that the parameter|R̃[N1/3]| is a

scaled version of the linear combination|βrR̃[N1/3]+βwW̃ [N1/3]|,
used in [3]. Using parameter|R̃[N1/3]| eliminates the need to
computeβr andβw.
Step 4: According to the 3-periodicity property, the spectral en-
ergy |R̃[N1/3]|

2 peaks within protein coding regions. However,
the values of these peaks vary significantly across DNA specimens
obtained from different organisms. We use

SNR[`1]
∆
=

|R̃[N1/3]|
2

|R̃
(1)
av|

2 + |W̃
(1)
av |2

=
|R̃[N1/3]|

2

2|R̃
(1)
av|

2
(12)

as the classification criteria. Terms|R̃(1)
av|

2 and |W̃
(1)
av |2 are the

average values of the squared magnitudes of the DFT’sR̃[k] and

W̃ [k]. These values are computed using Theorem 2.
Step 5: The rectangular window is moved forward by 3 nucleotides
and the value of̀ is incremented by 1. Starting from step 2, the
procedure is repeated till the entire DNA sequence is scanned.
Step 6: Plot SNR[`] as a function of̀ . The peaks in the plot iden-
tify protein coding regions. To automate our classification, we use
a threshold valueη such that SNR[`] ≥ η corresponds to protein
coding regions, while SNR[`] < η corresponds to noncoding re-
gions. The value of thresholdη is computed in section 5.
Bartlett Window: The aforementioned algorithm uses a rectan-
gular window to partition the DNA sequence into subsequences
of lengthN1. Rectangular windows introduce discontinuities by
abruptly truncating the DNA sequences and tend to spread the
spectrum of the original DNA sequence in the frequency domain.
This causes the power of the DFT toleak over into adjacent fre-
quencies. To minimize the leakage, we use the Bartlett window

w[n] =

{
2n

N1−1
0 ≤ n ≤ 1

2
(N1 − 1)

2 − 2n
N1−1

1
2
(N1 − 1) ≤ n ≤ (N1 − 1)

(13)

to partition the DNA sequence. The proposed algorithm uses the
Bartlett window and involves steps 1–6 except step 3 usesRb[n] =
w[n]R[n] instead ofR[n].

5. EXPERIMENTS

The experiments are designed to make three major points. First,
we show that the use of the Bartlett window improves the perfor-
mance of the splicing algorithm by removing the extraneous peaks
introduced by abrupt truncations of the rectangular window. Sec-
ond, we determine the value of thresholdη to classify the peaks in
SNR, (13), as coding versus noncoding peaks. Third, we quantify
the performance of the proposed splicing algorithm.

Fig. 1 illustrates the differences between the magnitudes of
|R̃[N/3]|2 for the proposed splicing algorithm with rectangular
and Bartlett windows. Results from two different DNA sequences,
obtained from the C. elegans dataset, are included. Each DNA
stretch has two coding regions at positions enclosed withinthe ver-
tical dotted lines. The algorithm using rectangular window(Figs. 1(a)
and 1(c)) is not accurate as it produces peaks at wrong locations.
In Figs. 1(a) and 1(c), we also observe more than one peak within
a single coding region. On the other hand, the algorithm using
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Fig. 1. Comparison of proposed splicing algorithm with rectangular window (plots (a) and (c)) and the Bartlett window (plots (b) and (d)).

the Bartlett window (Figs. 1(b) and 1(d)) produces a single peak
within each coding region. Figs. 1(b) and 1(d) removes the extra-
neous peaks observed with the rectangular window.

To determine the value of thresholdη that discriminates cod-
ing regions from noncoding regions, Fig. 2 plots the cumulative
distribution of the SNR for both coding and noncoding regions
for the three organisms: Chromosome III of C. elegans (Acces-
sion number NC003281); Complete genome of E. coli (Accession
number NC002695); and Complete genome of Pirellula sp. (Ac-
cession number NC005027). The solid curve in Fig. 2 shows the
fraction of coding regions with SNR less than the abscissa while
the dotted curve shows the fraction of noncoding regions with SNR
greater than the abscissa. We select a threshold value of 1.75 to dis-
tinguish between protein coding regions from noncoding regions.
Note that by settingη = 1.75, Fig. 2 bounds the decoding capabil-
ity of the splicing algorithm to about 15% in correctly identifying
protein coding and noncoding regions.

To quantify the performance of the proposed algorithm, we
process protein coding regions in chromosome III of C. elegans.
The chromosome has a total of 13783268 nucleotides with 8172
coding regions. The minimum length of coding regions is 2 nu-
cleotides, while the maximum length is 7204 nucleotides. Table 5
lists the number of successfully detected coding regions, arranged
in order of the increasing length. We observe that the performance
of the algorithm is better in detecting coding regions whoselengths
are comparable to the window size (N1 = 351). For example,
coding regions with lengths equal to 250 nucleotides are correctly
identified at a detection rate of about 80%. With larger coding re-
gions, the detection rate improves even further. However, when
the length of coding regions is smaller than 150 nucleotides, the
DFT based splicing algorithm does not perform as well. In such
cases, the data extracted by the window contains both codingand
noncoding nucleotides. The “3-periodicity” condition is no longer
valid and the DFT based algorithms are relatively inaccurate. In
terms of the detection of noncoding regions, the proposed algo-
rithm correctly identifies 7053 or roughly 86% of noncoding re-
gions.

6. SUMMARY

In this paper, we provide a theoretical justification for the3-periodicity
property, which results in a significant peak within proteincoding
regions of genomic DNA sequences. A new classification criteria,
which normalizes the DFT spectrum with average energy present
in the DFT coefficients, results in an automated approach in pre-
dicting coding regions. In our experiments, the proposed approach
provides considerable improvement over other DFT based algo-
rithms.
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Fig. 2. Cumulative distribution of SNR for both coding and non-
coding regions obtained from the C. elegans, E. coli, and Pirellula
sp. datasets. The solid curve corresponds to coding regionswhile
the dotted curve corresponds to noncoding regions.

Exons with length Total Number Total Detected
L ≥ 100 7157 3004 (42%)
L ≥ 150 4177 2513 (60%)
L ≥ 200 2949 2080 (71%)
L ≥ 250 2099 1648 (79%)
L ≥ 300 1534 1270 (83%)
L ≥ 350 1177 1010 (86%)
L ≥ 400 919 826 (90%)

Table 4. Number of protein coding regions successfully detected.
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