COSC 4111 3.0—Fall 2002

Posted: Sep 28, 2002
Due: End of October [Exact date TBA]

Problem Set No. 1

(1) Express each of the functions $\max (x, y)$ and $\min (x, y)$ by substitution using only the functions $x+y$ and $x-y$.
(2) Prove that the function $f(z)$ that returns the number of distinct primes in the factorization of z is in $\mathcal{P} \mathcal{R}$.
(3) Prove that $\lambda x y \cdot \operatorname{lcm}(x, y)$ is in $\mathcal{P} \mathcal{R}$, where "lcm" denotes least common multiple, i.e., the smallest number z that is divided by both x and y.
(4) Page 81, problems 18, 22.
(5) Regarding the function $\lambda i x \cdot g_{i}(x)$ of Theorem 3 (p. 78-79 of text): It is proved there that $1-g_{x}(x)=0$ is not in $\mathcal{P} \mathcal{R}_{*}$.
How about $1+g_{x}(x)=0$? Why?
(6) Write a loop program which computes $\lambda x \cdot \operatorname{rem}(x, 3)$. The program must only allow instruction-types $X=0, X=X+1, X=Y$ and Loop $X \ldots$ end. It must not nest the Loop-end instruction!
(7) Write a loop program which computes $\lambda x y z$.if $x=0$ then y else z. The program must only allow instruction-types $X=0, X=X+1, X=Y$ and Loop X . . end.
(8) Prove that the predicate $Q(z)$ that is true iff $z=2^{x}+2^{y}$ where $x>y>0$ for appropriate x and y is in $\mathcal{P} \mathcal{R}_{*}$.

