COSC 4111 3.0—Fall 2002

Posted: Oct 24, 2002 Due: In about four weeks [Exact date TBA]

Problem Set No. 2

- (1) Prove that $\lambda x.A_x(2) \notin \mathcal{PR}$, where $\lambda nx.A_n(x)$ is **our version** of the Ackermann function. Your proof must follow this path:
 - (a) Prove that $A_n(x) < A_x(2)$ a.e. with respect to x.
 - (b) Using the previous result, prove that if $\lambda x.f(x) \in \mathcal{PR}$, then $f(x) < A_x(2)$ a.e.
 - (c) Conclude the argument.
- (2) Prove that if $\lambda \vec{y}.f(\vec{y}) \in \mathcal{P}$ and $Q(\vec{x},z) \in \mathcal{P}_*$, then $Q(\vec{x},f(\vec{y})) \in \mathcal{P}_*$. Keep in mind the definition ("1-point-rule")

$$Q(\vec{x}, f(\vec{y})) \stackrel{\text{Def}}{=} (\exists z)(z = f(\vec{y}) \land Q(\vec{x}, z))$$

- (3) Prove that if the graph of f is r.e. then $f \in \mathcal{P}$. Is the converse true? Why?
- (4) Using the above and closure properties of \mathcal{P}_* (cf. posted "Kleene" paper) prove that \mathcal{P} is closed under definition by so-called "positive cases" (these are r.e. cases). That is, if all the f_i are in \mathcal{P} , all the Q_i are in \mathcal{P}_* and g below is a function, then $g \in \mathcal{P}$.

$$g(\vec{x}) = \begin{cases} f_1(\vec{x}) & \text{if } Q_1(\vec{x}) \\ f_2(\vec{x}) & \text{if } Q_2(\vec{x}) \\ \vdots & \vdots \\ f_k(\vec{x}) & \text{if } Q_k(\vec{x}) \\ \uparrow & \text{otherwise} \end{cases}$$

Hint. Use the previous exercise and work with the graph of g.

- (5) Do #22 and #23, p.126 of text.
- (6) Prove that there is an $e \in \mathbb{N}$ such that $\phi_e(x) = e$ for all x. That is, "program e outputs itself for every input value x".

Hint. Use the recursion theorem.

COSC 4111. George Tourlakis. Fall 2002

(7) For your amusement: Can you write a "self-reproducing" program, such as *e* above, in your favourite programming language? This program, on every input, just prints itself—exactly, i.e., prints nothing else—and halts.

(Actually, I am inviting you to write and fully test one; I am not just looking for a yes/no answer :-)

COSC 4111. George Tourlakis. Fall 2002