Problem Set No. 2

Dept. of Computer Science

Date: Nov. 10, 2002 **Due:** TBA

- 1. Do Ch. 7 problems 3 and 7.
- **2.** Without using Rice's theorem, show that the set $A = \{x : 3 \in ran(\phi_x)\}$ is not recursive. (I.e., " $x \in A$ is unsolvable").
- **3.** Is the "proof" below correct? If not, where exactly does it go wrong? "Let $y = f(\vec{x}_n)$ be r.e. Then $y = f(\vec{x}_n) \equiv \psi(y, \vec{x}_n) = 0$ for some $\psi \in \mathcal{P}$. Thus $g = \lambda \vec{x}_n . (\mu y) \psi(y, \vec{x}_n)$ is in \mathcal{P} . But g = f, since the unbounded search finds the y that makes $y = f(\vec{x}_n)$ true, if $f(\vec{x}_n) \downarrow$. Thus, $f \in \mathcal{P}$."
- 4. Chapter 8, problem 7 (*Hint*. No. Use the Ackermann function to show why not).
- 5. Chapter 13, problems 1, 7, 23, 26, 27, 48.

cs6113 Computability. Instructor: George Tourlakis. Problem Set#2/F2002.