## Problem Set No. 2

## Dept. of Computer Science

Date: Nov. 10, 2002
Due: TBA

1. Do Ch. 7 problems 3 and 7 .
2. Without using Rice's theorem, show that the set $A=\left\{x: 3 \in \operatorname{ran}\left(\phi_{x}\right)\right\}$ is not recursive. (I.e., " $x \in A$ is unsolvable").
3. Is the "proof" below correct? If not, where exactly does it go wrong?
"Let $y=f\left(\vec{x}_{n}\right)$ be r.e. Then $y=f\left(\vec{x}_{n}\right) \equiv \psi\left(y, \vec{x}_{n}\right)=0$ for some $\psi \in \mathcal{P}$. Thus $g=\lambda \vec{x}_{n} .(\mu y) \psi\left(y, \vec{x}_{n}\right)$ is in $\mathcal{P}$. But $g=f$, since the unbounded search finds the $y$ that makes $y=f\left(\vec{x}_{n}\right)$ true, if $f\left(\vec{x}_{n}\right) \downarrow$. Thus, $f \in \mathcal{P}$."
4. Chapter 8, problem 7 (Hint. No. Use the Ackermann function to show why not).
5. Chapter 13, problems 1, 7, 23, 26, 27, 48.
