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COSC 2001(A) 3.0—Fall 2000

Date: Nov 7, 2000
Due: Nov 28, 2000

Problem Set No. 3—The last one!

� Papers must be typed or word-processed (the “must” does not apply
to diagrams), and deposited in the course drop-box(es) on the due date.
I Due time: Any time on November 28, 2000. Boxes will be cleared

the following morning. Location of the drop-boxes: There are two
boxes—labelled 2001A and 2001B—on the first floor of CCB, in the corridor
that leads to the Ariel Lab.J

In this Problem Set it is allowed—but not required!—to submit ONE
joint paper that has a total of TWO co-authors from the same
section. The same mark, as assigned to such a joint paper, will be given to
each of its two authors.
I IFF you are submitting Problem Set #3 with a partner, then you must

notify me as described below, Prtnr1.–Prtnr4.:

Prtnr1. Make a file called “partner” (no quotes). [Please do not call it “Part-
ner” or “PARTNER” or “a3partner” or anything other than “part-
ner”].

Prtnr2. Put in it your name and “ariel” login, and the name and ariel login
of your partner as well.

Prtnr3. Give the following command on ariel

“submit 2001 a3 partner”

NOT later than 5:00pm, Nov. 21, 2000.

Prtnr4. Only one submission (Prtnr3., above) per pair please! J

If you do NOT plan to work with a partner please do NOT submit
any co-author information!

(1) This teamwork is strictly for “declared” pairs.
(2) Any strong similarity between different papers will be seriously frowned

upon. (To learn more about this issue please follow the link “Senate Policies”
found on the URL: http://www.cs.yorku.ca/∼gt/courses/) �
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� General Remark. Each solution must contain adequate explanation(s) of why
it answers the relevant question. While examples can help one to understand
your point of view, they are NOT substitutes for a logical argument that estab-
lishes your solution’s validity in general . �
1. For the grammar G of problem 3 in Problem Set #2 (“the MATH1090 con-

nection”) produce a PDA M using the procedure in Sipser, or that from
class (the two are almost identical), so that L(G) = L(M).

2. “Universal DFA do not exist”. OK, let us substantiate the preceding
statement.

My part: We can easily see that all possible DFA with tape alphabet {0, 1}
can be coded as strings over a fixed alphabet (I am describing this for your
benefit in the following few lines—nothing for you to prove here):

Indeed, let us code a DFA M : Each “instruction” δ(qi, a) = qj is represented
by the string qĩ ∗ a ∗ qj̃, where a ∈ {0, 1} and ĩ is the decimal representation
of the number i. Thus, adding “;” as a new symbol, we represent the
automaton by “gluing” the instruction-representations, one after the other,
using “;” as inter-instruction glue, and appending at the end the sequence
the string “; qm̃; qñ; . . . ; qk̃;” which indicates that qm is the initial state and
qn, . . . , qk are the final states.

Any automaton, such as M , has more than one string representation (due
to the fact that permutations of states and/or instructions are possible) over
the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, q, ∗, ; }.
R(M) will denote all the representations of M .

End of the description of how to code a DFA.

Your part now: Prove that the language

L =
{
x; y : (∃M)

(
M is a DFA & y ∈ R(M) & x ∈ L(M)

)}
is not regular, that is, in plain English, “there is NO DFA U which can
faithfully simulate an arbitrary DFA M (coded as y) on arbitrary input
x”.

3. Prove that CFLs are closed under concatenation, reversal, and Kleene star.

By “closure under reversal” we mean this: For any language L define

LR
def= {xR : x ∈ L}

Recall that for a string x, “xR” is the string obtained by reading x from
right to left. Thus, “closure under reversal” means that if L is a CFL, then
so is LR.
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� Recall that φx denotes the function of one argument computed by the
Turing Machine, Mx, found in position x of the “standard” (lexicographic)
enumeration of all Turing Machines (over a fixed input alphabet Σ). �

4. Prove that {x : dom(φx) = ∅} is not decidable.

Note. By “dom” we mean “domain”, that is, for any function f of one
argument

dom(f) = {x : (∃z)f(x) = z}

5. YES/NO, but with proof please!

(a) The problem ε ∈ L(G) is decidable for any CFG G.

(b) The problem 0 ∈ dom(φx) is decidable.

(c) The problem 0 ∈ dom(φx) is semi-decidable (i.e., the set {x : 0 ∈
dom(φx)} is recognizable).

6. For extra credit (10 points) and some amusement. You can still
get full marks without doing this ADDITIONAL problem.

Fix a TM (input) alphabet as always. In what follows, “output” means
numerical (in N) output, as always.

Now, define a function of one variable, b(n), by

b(0) = 1 and, for all n > 0,

b(n) def= max{output of an n-state TM
that starts with a blank tape and eventually halts}

Prove

(1) b(n) is total.

(2) For any total computable function f(n), there is a number nf (the sub-
script suggests that “nf” depends on f) such that

n > nf implies f(n) < b(n)

(3) b(n) is not computable.

Notes and Hints.

(I) Of the 10 extra points, (1) gets 1, (2) gets 6, (3) gets 3.

(II) (3) uses (2). You can still earn your full points in (3) even if you
could not do (2) (take (2)’s statement without proof).
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(III) Hints for (2): Take an arbitrary computable total f(n). Say, “With-
out loss of generality, f(n) is increasing”, and show why indeed
there is no loss of generality in assuming so. Then say “Let the TM
M of, say, s states compute f(2n+ 2) + 1.” Wait a minute! Can you
say that? Why?
Now take nf = 2s and take n > 2s (you want to prove b(n) > f(n)
for all n > nf , right?). Next, build a TM, N , of exactly n states,
that uses n− s of those states to build the number n− s− 1 on tape,
starting with a blank tape.
Next N uses M as a subprogram. You do the rest and fill in all the
details that I left out.
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